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A Theory of Phase Determination for the Four Types of Non-Centrosymmetric
Space Groups 1P222, 2P22, 3P,2, 3P,2
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Joint probability distributions and relevant expected values and variances are obtained for selected
(but typical) non-centrosymmetric space groups belonging to the four types 1P222, 2P22, 3P,2,
3P,2. These lead to formulas for phase determination the analysis and interpretation of which
constitute the major goal of this paper. The analysis is strongly dependent on the theory of in-
variants and seminvariants, and the agreement between this theory and certain consequences

of the probability theory is noteworthy.

1. Introduction

In a previous paper (Hauptman & Karle, 1953) it was
pointed out that ‘the concept of the joint or compound
probability distribution forms the basis for a direct
attack on the phase problem’ since the probability
distribution of a phase may thereby be obtained once
a set of structure factor magnitudes or phases is known.
The details of a program for phase determination based
on this idea have been carried out for all centro-
symmetric space groups (Hauptman & Karle, 1954,
hereafter referred to as Monograph I). The purpose of
this paper is to derive relevant probability distribu-
tions and to describe possible procedures for phase
determination based on them for typical non-centro-
symmetric space groups in the four types 1P222,
2P22, 3P,2, 3P,2 (Hauptman & Karle, 1956). These
four types comprise roughly 459% of all the non-
centrosymmetric space groups. They are characterized
by the property that each component of their invariant
and seminvariant moduli is two. The remaining types
in which zero, three, or six appear as components of
the moduli will be treated at a later date. Detailed
computations are not carried out for Category 3, but
the methods described for Categories 1 and 2 carry
over to Category 3 in a routine way.

Although the joint probability distributions are
rigorously derived, their prime purpose here is as a
heuristic device. The formulas for phase determination
suggested by them are analyzed ab initio and their
-exact significance and limitations critically evaluated.
One important conclusion is that the presence of
grossly dis-similar atoms (e.g. a small number of
relatively heavy atoms) is more likely to prove a
serious obstacle to the successful application of these
methods than was the case for the centrosymmetric
space groups. Even in the case that all atoms are equal,
the number of data needed may well exceed the number
contained within the copper sphere. No statement
concerning the general applicability of these proce-
dures will be made at this time. However, this paper

supplies the statistical tools for estimating how reliable
the methods are likely to be in any particular applica-
tion.

2. Invariants and seminvariants

A knowledge of the theory of the invariants and semin-
variants (Hauptman & Karle, 1956) was found to be
an invaluable aid in gaining a preliminary survey of
procedures for phase determination. This theory
enables one to decide which phases are ¢etermined
by the crystal structure and which by the magnitudes
of a sufficient number of structure factors. It also
enables one to fix an origin by first selecting a func-
tional form for the structure factor and then specifying
in a suitable way the values of an appropriate set of
phases. Again, it provides a means for distinguishing
between the two enantiomorphous structures S and 8’
(related to each other by reflection through a point)
which are permitted by the given set of structure
factor magnitudes. Finally, the theory indicates which
joint distributions will be of value in determining
phases, and in this way motivates the analysis.

In order to illustrate the role played by the in-
variants we consider in some detail the space group
P222 belonging to the type 1P222. The phases which
are intensity invariants (and therefore also structure
invariants) are all phases @, where &, k, and ! are
all even and at least one of %, k, [ is zero. These phases
are the structure invariants the values of which (either
0 or z) are uniquely determined by the intensities.
Only the magnitudes of the remaining phases @
which are structure invariants, i.e. for which 4, &, and !
are all even and hkl + 0, are determined by the in-
tensities. The sign of any such phase (the magnitude
of which is different from 0 and x, and preferably
close to 3z) may be specified arbitrarily, thus distin-
guishing between the enantiomorphous structures S
and 8’ permitted by the intensities. Once this is done
then the values (not merely the magnitudes) of all
phases which are structure invariants are uniquely
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determined. Finally, in order to fix the origin, three
phases @pzy, ¢ = 1,2, 3, one index of each of which
is zero and constituting a linearly independent set, are
chosen. The value of each such phase is either O or 7.
Either one of the two possible values for each such
phase may be chosen and then the values of all re-
maining phases are uniquely determined.

For space group P2,2,2,, also of type 1P222, the
same procedure as that just described may be used.
However, it is expedient to alter the procedure some-
what, and this will be described in detail later.

3. The normalized structure factor E
The structure factor Fy is defined by means of

Fy = |Fy| exp [ign] = X+1Y (3-01)
Nin
X = V{f;’h&(xj’ Y %5 h) > (3'02)
j=
Nin
(3-03)

Y = .zifih"](xi’ Yi> %4 h) )
7=

where N is the number of atoms in the unit cell, n is
the order of the space group, f, is the atomic scattering
factor, ;, y;, 2; are the coordinates of the jth atom,
and & and 7 are trigonometric functions which depend
upon the space group; e.g. for Pl,

& = cos 2m(hx+ky+1z) ,
7 = sin 2n(hx+ky+lz) .

(3-04)
(3-05)

For non-centrosymmetric structures having atoms
in general positions only the probability distribution
for the magnitude |Fy| of a particular structure factor
(neither real nor pure imaginary as a consequence of
space group symmetry) as the atoms in the asymmetric
unit range uniformly and independently throughout
the unit cell is given approximately by (Hauptman &
Karle, 1953, equation (24))

_ nx exp (—na?[2m,0,)

P .
(@ — (3:06)
where
1 nlnl
md =§ S S Ededydz + 0, (3-07)
v0 J0 YO
1 0l 5l
m? =S S 5 ntdedydz + 0, (3:08)
0 JO YO
my = my =mg, (3-00)
and
N Nin
o = Zfh=n2fh (3-10)
i=1 -

Evidently both m, and o, and therefore Pg(x),
depend on h. However, it turns out that for each space
group the number of different distributions Pg(z) is
finite. From (3-06) the average of any power of |F|
may be found. In particular,

{|F|?) = 2myo,/n . (3-11)
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Next we define the normalized structure factor Ey
by means of
Fn

Bn = g rmdyagn)t

(3-12)
Equation (3-12) is valid also for the centrosymmetric
space groups and for those structure factors for non-
centrosymmetric space groups which, as a conse-
quence of space-group symmetry, are either real or
pure imaginary (cf. Monograph I, p.34), since in
these cases one of mj, mf is identically zero and
equation (3-15) of Monograph I (to which (3-12) now
reduces) applies. Evidently, the phase of Ey, is equal
to @n, the phase of Fp. From (3-11) it follows that the
average value {|En[®), of the square of the magnitude
of a particular normalized structure factor as the atoms
in the asymmetric unit range uniformly and inde-
pendently throughout the unit cell is unity, i.e.

(En®: =1. (3-13)

It is a fact of fundamental importance that, in general,
the average of |E|? over z, y, z is the same as the
average of |E|? over h, k, ! (cf. Monograph I, p. 35).
In other words, for a fixed structure, the average value
{|En|®)n of the squares of the magnitudes of the
normalized structure factors as the vectors h range
uniformly over all reciprocal space is unity, i.e.

{|Bu/Dn=1. (3-14)

As with centrosymmetric structures, (3-14) is im-
portant in that it is the basis, in an obvious way, of
a procedure for correcting observed intensities for
vibrational motion and for putting them on an abso-
lute scale (cf. Wilson, 1949).

In terms of the normalized structure factor, the
probability distributions (3-06) assume a very simple
form. Denoting by P(x)dxz the probability that |E|
lie between x and x+dz, where = > 0, (3-06) implies

P(x) = 2x exp [—2?] . (3-15)

It is seen that P(x) has the same form for all vectors
h and for all the non-centrosymmetric space groups.

4. Joint distribution

As in the case of the centrosymmetric crystal, the joint

distribution is useful for deriving the probability

distribution of the magnitude and phase of a structure

factor when certain magnitudes or phases are specified.
It is convenient to use the abbreviations

'fg = ‘S(x’ Y, 2, hg) s

Ne = 7](2?, Y, 2, h;) . (4°02)
Denote by p(&,, ..., &, 7y, - -+, ;) the joint probability
that &, lie in the interval &,, &,+d&, and that 7, lie in
the interval 7,, n,+dy,, 0=1,2, ..., 7; 0 = 1,2,
..., s. Let P,(4,, ..., 4,, By, ..., B,)d4,...dB; be
the joint probability that X, lie in the interval

(4-01)



J. KARLE AND H. HAUPTMAN

A, A,+d4, and Y, lie in the interval B,, B,+dB,,
Q=1 2, ..., 7 0—1 2, ..., s; where X, and Y,
are obtained from (3-02) and (3-03) by replaclng h by
h, and h, respectively. We prove next the fundamental
result

PI(AD oo '7A1‘7 Bly . -7Bs)
1 o0 0 T o8
= ——(2n)r+s S_oo ... S_ooexp (—zgé‘lAeuQ—z‘leava)
Nin
X III q(‘filul, “es ,fj,.u,, f]'].vl) .o .fjsvs)dul. . -dvs, (4:‘03)
j=
where

Q(filup ‘o :firur’ filvi’ .. "f]'svs)
) )
=S -"S p(fp--w&vﬂp“‘;ﬂs)
—0

—o0

r s
X exXp (z 2 fiboup+1 ijonavo> d&,...dn,, (404)
o=1 o=1
and

fm f7(he’ (4 e) '—fi }
Fia = Filh, kg Lg) f,(h)

The probability, Q(4,, ..., 4., By, ..., By), that X,
be less than 4, and Y, be less than B, for every

(4-05)

e=1,2..,7r0=1,2,...,s,is
Q(Al) AR Ar) Bl) A ] B.v)
oo o Nin :
_ S .. S P - b s - ) i
—o0 —o0 J=
r s
X IIIT(SIQ’ ] ‘SN/ng) HIT(nlm ey nN/no) s (406)
e= o=
where
1 1 0% exp [e(X,— Ap)upldu,
T(Slg) ceey éN/nQ) ’_5—%5_& 'l:’llfe
(1t X, < 4, '
_{0 if X, > AQ} (407
( ) = 1 1 S°° exp [¢(¥Y ,— By)v,]dv,
Nigs + + +5> NWjro 3 9 711)0
1if Y, < B, )
={0 if ¥, > BU}’ (4:08)
and

&jp = () yjp 7 M) 5 } (4-09)

Nje = 77(777': Y % hc;) .
By differentiating (4-06) with respect to 4,, ...,

A4,, By, ..., B, we obtain (4-03) and (4-04), since
P4, ...,4, B, ..., By
ot Q(Ay, ..., 4, By, ..., By
= . (410
34, ... 2B, (410)

Equations (4-03) and (4-04) are the starting point
from which the joint probability distributions for the

ACo
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magnitudes and phases of the structure factors may
be derived on the basis that certain sets of magnitudes
or phases are known. As in the derivation of (4-03),
the atoms in the asymmetric unit are assumed to range
at random throughout the unit cell. Useful distribu-
tions are then obtained by making use of a knowledge
of the magnitudes or the phases of a specified set of
structure factors. The formulas to be derived are of two
types, those requiring a knowledge of intensities only,
and others requiring a knowledge of the phases also.
In order to express (4-03) in a more useful form we
first find the Maclaurin expansion of the exponential
in (4-04):
.5 f 7‘3’”&)

Q(fil Uy - fy’rur: fy’lvl» .

. S p(§7b et 57'1-’ 777'1, ety 777.;)

o
{ ( mef U+ éfionava)
1
2!

2

r 2
g +2f,om )
7 7 3
5”(5 Tieote +2f70770 )

} (4-11)

The terms of (4-11
moment

o0
(.

—00

) are all of the form of a mixed

.S p(&l’ e ey Er) 7711 ey 773)

X ERL L g yedEyL L dn,. (4012)

Interpreting (4-12) as an expected value, or average,
of £, gy, . .y, we infer that

1 plnl
L = So So Sﬁ“(x: ¥,z hy). .. En(z, 7,2 hy)

X (@, ¥, 2, hy) . .5 (@, ¥, 2, hy)dedydz . (4°13)
It may be seen from (4-13) that the evaluation of ¢
from (4-11) and (4-12) does not require an explicit
expression for p(&,, ..., &, 1. .., ns). It is sufficient
to evaluate the moments m}l )% from (413), a

relatively simple (but often tedlous) matter, given the
functions &, and 7,, which are known for all the space
groups. It is thus seen that the exact nature of the
interdependence of the various structure factors is
revealed by the values of the mixed moments (4-13).
As a general rule these moments vanish. However, for
suitable relationships among the vectors hy, h,, ¢ =
1,...,n,0=1, , 8, which depend upon the space
group (and are easily determined for each space group),
these moments differ from zero. In this way those
structure factors most intimately related to any given
one are determined. Our next task is to derive certain
of the significant non-vanishing mixed moments (4-13)
and to express the probability distributions in terms
of them. It is important to observe that in general not

43
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only may 7 be different from s but the sets hy, o =1,

.,7,and h), 0 =1,...,s need have no elements
in common. It will be seen that this general formula-
tion will enable us to obtain information concerning
three-dimensional phases from one- and two-dimen-
sional data, and vice versa.

5. Type 1P222

Only the space groups P222 and P2,2,2, belonging to
Type 1P222 are here considered in detail. The re-
maining space groups belonging to this type are
readily treated in a similar fashion.

5-1. Space group P222
For this space group

&p = 4 cos 2mhx cos 2xky cos 2nlz , (5-01)

7 = —4 sin 2xh sin 2xky sin 2nlz.  (5:02)

5-1-1. The intensity invarianis.—Since the values of
the intensity invariants (either 0 or x) are uniquely
determined by the observed intensities, we first seek
formulas involving these phases. It is readily verified
that the phases g, which are intensity invariants
have all indices %, k,7 even and at least one index
(h or k or 1) zero. Hence we are led to consider structure
factors Fy,, Fip,, the indices of which satisfy

by =2hy 0, by =2k, 0,15, =0,1,+0.
Equations (4-03) and (4-04) become
P,(4,, 45, By)

(5-03)

1 00 00 o0 .
= @ap S_w S_oo S-meXP [—¢(Aguy +Aguy+ Byvy)]
N3
X 111 q(fintts, fizta, fiavo) duy duydv, ,  (5:04)
j=
q(.fjlul, fizuz, sz'vz)
1,1
=155

Using the Maclaurin expansion of the exponential in
(5+05), this becomes

g = 1-(fuimgo+Spusmoy+5v3me0)
- (i/2)f7-1f7-22(u1u§m12+u1'02'mm)+ N

exp [i(fi1€1% +Spbate+2neve) dudydz .
(5-05)

(5-06)

where only the non-vanishing mixed moments have
been retained in (5-06). It is readily verified from
(5-01) and (5-02) that, in view of (5-03), the values of
these moments are given by

= 4, m = mf = mih = mlf = 2.

(5-07).

Substituting from (5-07) into (5-06) and wsing an
analysis like that on p. 33 of Monograph I, we find
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N/4

Hq = exp [—z (2(2 AU+ [ +f221:2))]

N/4
x {l—i{fjlffz(ulu§+ulv§)}. (5:08)
]:

Substituting into (5:04) and evaluating the resulting
integrals, one obtains

£ 4 B

2exp(— % +
230 If 3h
PI(AD -A2a B2) = N
o (A (3
S/l
2 S 2, p2
x 11+ 7 A8 4\ (509)
Bl dn
=1 =

where now all indices of summation range from 1 to N.

Transforming to polar coordinates and referring the

final distribution to the normalized structure factors £

rather than the structure factors F, (5-09) finally

becomes

2|E,| exp (—3E3—
(2_”)3/2

1Z,1%)

P(El: | Byl 992) =

xl1+——i§ﬁiE(IEI2~l)l
ERTETE

where P is the joint distribution of E,, |E,|, and g,,
and @, is the phase of E,. Since (5-10) is independent
of @,, the joint distribution of E, and |E,| is easily
obtained. Although our analysis does not require us
to do so, in order to simplify the later computations,
we make the usual assumption that

fjh = Z;fh )

where Z; is the atomic number of the jth atom and
Ja is independent of j. We finally obtain from (5-10)

2| B, exp (—31E7—|E,[?)

(5-10)

(5-11)

P(E,, |Eyf) =

(2m)3
S 2
X { S3/2 EI(IE l l)} ,  (6:12)
where
N
8, =32 (5:13)

and P(E,, |E,|)dE,d|E,| is the probability that E, lie
between E, and E,+dE, and that |E,| lie between
|E,| and |E,|+d|E,|.

For a known value of E; the expected (or average)
value of (|E,|2—1) is readily found from (5-12) to be
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(2ﬂ)§P(E1, x)
exp (—3}E3)

Equation (5-14) suggests that we consider the distribu-
tion of §,,, where

6hk = Ezmzk,o—('gg/z/ss) <|Ehkl|2_1>l s

as k and k range uniformly and independently over
the integers. For each fixed %, k£ the average on the
right side of (5-15) is taken over all integers I < 0.
First, from (3-02), (3-03), (5-01), (5:02), and (5-11)

dx = Sy

“Ep

Sm(xz—l) (5-14)

(515)

N/4
Xn =4 > Z; cos 2nhx; cos 2rky; cos 2nlz;, (5-16)
j=1

N
Yy = —4fu X Z; sin 2nhx; sin 2rky; sin 2nlz;, (5:17)
j=1

Xy = 16f4 2 Z,;Z; cos 2nha; cos 2mha
7
X cos 27ky; cos 2mky; cos 2nlz; cos 2nlz;, , (5:18)
Yy = 16} 3 Z,Z; sin 2mha; sin 2mhay

i
X sin 2zky; sin 2nky;. sin 27lz; sin 2nlz, ,  (5-19)

Xy = 16f3 3 Z% cos? 2mha; cos? 2mky;

! x (3+} cos dnlz)+ Ry, (5-20)
Y3 = 16f} 3 Z7 sin? 2zha; sin? 2nky;

! x (3=} cos dnlz)+R,, (521)

where B, and R, are obtained from (5-18) and (5-19)
by replacing 3 by ¥ . Since

i i*f
cos 27tlz; cos 2nilz;.
= § cos 27tl(z;+25) +4 cos 2nl(z;—2;) , (5:22)
sin 27tlz; sin 27lz,
= —} cos 27l (2;+2y)+} cos 2nl(z;—2;) , (5-23)
we conclude that
By =By =0,
itz 0 i j+4. (5-25)
From (3-01), (5-20), (5-21), and (5-24) we find, as-
suming A%+ k2 & 0,
Foul® Xi4+ Y2
<|Ehkll2>l — <l h]l;ll >l _ < h p h>l

(5-24)
provided that

(5-26)
h2Z; [R2Z
=1 j=1

N

8 2 Z7 (cos® 2nha; cos? 2mky;+ sin® 2rha; sin® 2rky;)
_ =t

S (5-27)

N4
4 3 Z3(14cos 4zhz; cos dmky;)
== 28
5 . (629)
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N/a
4 X Z3 cos 4mha; cos drky;
(Bl =1, = = S (5-29)
2

However, from (5-16)

N/a
4 X Z;cos 4nhx; cos 4nky;

ok = X2h,2k,0 _j=1
2h2k,0 — N 3 = S% ’
zzg) :
f2h,2k,0 (7_=1 7 (5.30)
since

Yoroto =0 from (5:17).
From (5-15), (5-29), and (5:30) we get

w7, oF
O =43 (—7— - —2Z?) cos 4mhx; cos dnky; . (5-31)
=1\g} 8

Now (see equation (1-25) and Appendix of Mono-
graph I) it is well known that, as &, k£ range uniformly
and independently over all the integers, d,, is ap-
proximately normally distributed about the mean of
zero with a variance g,, given by

¥z SE o\ g8
- =2<_7_._Ez?> =20 g (532
YA st o8 83 32

Hence (5-15) may be written

Ezh,2k,0 ~ (,5*3/2/33) EBul®—1), (5-33)
where the symbol ~ means probably equal. More
precisely, the values of Ey), ;¢ are normally distributed
about the mean value given by the right hand side of
(6-33) with the variance ¢,, given by (5-32). The im-
portance of this result is due to the fact that we can
now estimate how often the right side of (5:33) can
be expected to lead to the correct sign for By, .
For example, let ¢, as computed from (5-32), be 0-5,
whence ¢}/% = 0-7. If |Ey 10| = 1-4, then in order for
the right side of (5-33) to give the wrong sign for By on0
it must deviate in one direction from Eoporo by at
least two standard deviations. Since the probability
of this occurrence is only about 1/43, the right side of
(5-33) will give the correct sign for Eys, about 42
times out of 43. Even if |Ey,g0] = 0-7, (5-33) will give
the correct sign about 5 times out of 6, while if
[Eanor0l = 2-1, (5-33) will give the correct sign about
769 times out of 770. Of course (5-33) becomes more
reliable as o; approaches zero. It may be noted that
oy is a rough measure of the dissimilarity of the
atoms present, the larger values of o, belonging to
those structures with grossly unlike atoms (e.g. the
presence of a small number of relatively heavy atoms
together with a much larger number of lighter atoms).
In particular, if all the atoms are identical then
o, =0, and (5-33) becomes an exact equality for all

25,2k,0-

It has been assumed in this discussion that the right
side of (5-33) can be found exactly. This would be

43*
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Table 1. The phases which are intensity invariants, related probability distributions, expected values, and variances
for space group P222

The phases which head the columns are those phases, @i, for which values are to be determined

P(E, |Ej})
E 5.5 ) @09 Pogg P00  Qogo  Poog
Variance ¢; = ;2“—1 hi=1th, ki=3k hy=1h, =4 bj=13k, =4 hj=1%h. hj=3k L=}
3
Variance ¢
1 2|Bj| exp [—4E*—| By L .
E, |E)|) = V@) 1+@E(1Eyl -1)
Ss/z
E=—(lE;[2 1) =0 ki+0 Ri£0 - — —
83
o= —
S5
exp [—}E*—}E7) 2
P, |Bl) = ———— 1% 53/2 E(E;—-1)
Ss[z .
E=_(E—1> ;=0 k=0 hji=0 - — —
SS
o= —g- 2
H
exp [—31E°—}1E7%) f Ss pogr_
P(E,IE]D_;:M—[I-'_W ‘ST/zE( 1
1 Sglz . ki=0 1lj=0 hj=0
= _'_<Ei_l> — —_ — or or or
V2 S, - .
L=0 hj=0 k=0
3 5 2
o= 3.2,
83

true only in the case that the infinite number of data
were known. In practice the average on the right side
of (5-33) must be computed from a finite sample chosen
(not even at random) from an infinite population.
To obtain a rough estimate of the reliability of the
mean so computed we first find the expected value of

(|E4]2—1)2 from (5-12). We get
®© o e @0)EP(Ey, 7) _
So (x2—1)2 oxp (—1E9) de =1. (5-34)

From (5-34) and (5-14) we find the variance of
(|E5)2—1) to be
1-(S3/SHET ~ 1, (9-35)

since (S2/S3)E% is small compared to unity. We con-
clude that if » terms contribute to the mean in (5:33)
then the right side of (5-33) is normally distributed
about its true value (as computed from the infinite
population) with the variance ¢’ given approximately

by

3
o2 51 (5-36)
n 2 n

If we combine (5-32) and (5-36) it is possible to

estimate, in any given case, the probability that (5-33)
give the right sign for E,, ;o by taking into account
the values of o, 0y, |Eg2kpl, and the right side of
(56-33). In this way the proportion of signs correctly
determined by (5-33) can be estimated and levels of
rejection, which must be exceeded by the right side of
(6-33) before a sign is considered to be decisively
determined, can be specified. It should be noted that
in the case that not all atoms are identical the non-
zero value of a,, as given by (5-32), implies that a
certain percentage of signs will be incorrectly deter-
mined by (5:33) even if an infinite number of data is
available.

The cases that I, = 0 and one of &,, k, i3 zero are
treated in a similar way. The results are summarized
in Table 1 in which % and k replace 2A and 2k respec-
tively and h; replaces h,. The notation ¢,, means
that 2 and k& are both even (but not zero and not
necessarily equal) while I = 0.

5:1-2. The relation h;, = hy,+h;—We consider in
detail only the case

hi£0, k;+0,;+0,71=1,2,3; (5-37)

and find, as in the previous analysis (5-03)-(5-12),
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P(|E,|, |Ey, | By, @y, P25 P3)
= (|B,|.|By|. |Es|[n®) exp (—|Ey|2—|Ey|*—|Eq[?)
X {1+2(8,/SY*)|Ey|. | Ey|. | Ey| cos (p;—@,—@s)} . (5:38)

For fixed E, we find the expected value of
|EoEy|? cos (pa+gs)

where p is any number, from (5:38) as follows:

{|ELE4|? cos (P2 t@3))
— Soo Soo Sh S% 7| By Hg|P cos (@g+ )
|E2]=0 V| Bg|=0 Vga=0 dgg=0 | E1| €xp (—|Z,[?)
X P(|E,|, |E,|, |Ey, P15 Pas (Ps)d]EzldlEs]d‘Pzd(Ps (5-39)
12— .12
B AN A s R L
2
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X cos @y cos® (¢ +@s) d|By| d|Eg|dpydes  (5-40)

= (|BLE;|P*Y) (85/85°) |By| cos @y . (541)
Hence
83/ {|E,E,|? cos (po+@3))
COS @ = . . (542
AR AT AN (A AL S
In a similar manner we find
. S3* (|E,E,|? sin (Pat+@3))
sin @, = . 543
NI BB (5:43)
Replace E, by E, E, by E;, E; by E; and write
B.E;=Ey @it = @;. (5-44)

Then (5-42) and (5'43) suggest that we consider the
validity of the following equations:

Sglz 2 ]Eij,p COoS8 (P,:;'
Cos @ A N s 545
PESIE T 3 B (5-45)
Y]
gyz = Myl sin gy
sin @ ~ DE_ 7 (5-46)

SJE| T SE

i
B -4
tan ¢ ~ > |Ei7'lp o8 g s (5-47)
LY
where the sums in (5:45)-(5:47) are taken over all
i, j such that
h = h;+h;,

Rkl %0, hikl;=0, hkl +0.

(5-48)
(5-49)
We treat in detail only the case p = 1 and, since

(|E4j*» ~1 (Hauptman & XKarle, 1955), consider
therefore the distribution of &y, where
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On = |E| cos p—(852/8;) {|Ey| cos Piiij
+i(|E| sin p—(S3/%/8S,) {|E;| sin Piij) s (5:50)

as k, k, and [ range uniformly and independently over
the integers and the supplementary conditions (5-48)
and (5-49) are fulfilled. (No confusion should arise over
the use of the symbol ¢ both as the imaginary unit and
as an index of summation.)

In view of (5-01) and (5-02),

IS €
By=— Tt T
fm(Z Z?) JuiSs
7=1
4 ;N
Ey, = 5 (j%‘lZi/ cos 2rwhx; cos 2nk;y; cos 2nl;z;
=

Na
—t X Zj sin 27z sin 2nk;y; sin 27zl,-z7-,) , (5-52)
=

16 ( ¥ia
EhiEhj = §2- {7€,Z7'Z7n (COS 27lhi$]~l cos 27th1x7.,
by
X cos 2nk;y; cos 2nky;. cos 2nlizy cos 2nlizy
—sin 2.'7!}1«,,:1:7" sin 2nh7x1» sin 2.7Zk1y7' sin 27Ik7y7"
x sin 27l;z; sin 27lz;0)

Nia
—1 2 Ziijlr (COS 2ﬂhiz7v SiIl 27!’1/71:1'
7
1
x 08 2mk;y; sin 27k;y; cos 27l 2y sin 27ulz;
+sin 27hx; cos 27whx;. sin 2nk;y; cos 2mk;y;.
xsin 27l;z; cos 27zl]-ziu)} , (5-53)

.. 16 ( %4
| B3] (cos @y;+ising;) = s, {j élz;, (cos 27h;x; cos 2mh

x cos 2nkyy; cos 2nk;y; cos 2nlzy cos 2nl;z;y

xsin 27l sin 2nlz;)

N
— i X Z7 (cos 2mhx; sin 2mha;,
F=1

x cos 27k;y; sin 27uk;y; cos 2ml;z; sin 27lz,

+sin 2nh;z; cos 2nh;x; sin 2nky; cos 2nk;y;

x sin 2nl:z; cos 2nljzj,)} +R, (5-54)
where R is obtained from (5-53) by replacing
2 by X .
Y 7*5”
We conclude that
(Binzn, =0, (5-55)
provided that
(@, Yps 27) = £ (@, Yy 2p) I § 7. (5°56)
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Hence, from (5-54),

{|E4| (cos (p,-i—!-i sin @;; >h1+h7

4
= —{ > Z2 c0s 27t(h;+ hy)z; cos 27t(k;+k;)y;

IR P
xcos 2 (l;+1;) 2
—zZZ2 sin 27 (h;+h;)zp sin 27 (k;+k;)y;

=1
x sin 2n(li+lj)zj.} (5:57)
However
Ehﬁ.,. = Ey = |Ey (cos ¢+ sin ¢)
4 N/4
2 Zj (cos 2rhx; cos 2nky; cos 2nlzy
Sg =1
— i sin 2rha; sin 2nky, sin 27lz;) . (5:58)
From (5-50), (5-57), and (5-58),
N4 /7 3
n— 43 (ﬁ—ﬂ zg,)
7=1\8% 3 _
X (cos 2mwhx; cos 2mky; cos 2nlz,
—1 sin 2zhx; sin 2nky; sin 2nlz;) . (5+59)

Now, just as in the derivation of (5:32), we conclude
that, as h, k, | range uniformly and independently
over all the integers, both the real part and the
imaginary part of dn are normally distributed about
zero with a variance given by (5:32). In short we may
write

Sz
cos @ ~ S,E| By cos @iy, (5-60)
R 832
sin ¢ ~v —— 3E] Byl sin @y, ;s (5-61)
tan g ~ {IEy] sin ;) ; (5-62)

1Byl cos @iy,

where the symbol ~ denotes probable equality. More
precisely, cos ¢ and sin ¢ are normally distributed
about the means (5:60) and (5-61) respectively with
the variance o, given by

1 (8,8,
o1 —W(T;“) -

The variance ¢ arising from the use of a finite num-
ber n of data to compute a mean is calculated as in
§ 5:1'1. The various cases which arise when (5:49) is
not fulfilled are treated in a similar manner and the
results are summarized in Table 2. It should be noted
that in order to conserve space, the cases corresponding
to the various cyclic permutations on the indices
permitted by the space-group symmetries have not
been included in Table 2; but these may be easily
deduced from the existing entries.

(5-63)
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5:1-3. Miscellaneous relations.—Some of the higher-
order terms in the Maclaurin expansion of the ex-
ponential in (5-05) lead ultimately to useful relations.
We list only five of the most useful sich distributions:

P(B, B, 1)) = "D oxp (~ 5~ B |E)

{1+t§2E’E(|E|2 1)}, (5-64)

where
b = hi+2h, k = ki+2k,» , (5-65)
l=10,=0,t=1 ifl;=0,t=1if [;+0; (566)
or where
I=01=0,t=4y2 if Li=0, t=)2 if l;=0. (5-68)
exp (—3E*—}E2— —%Ez
PE,E, E) = )"
S, 2
{1+tS2EE (E -1)¢, (5-69)
where
h=hi+2hj, k=lk;=1=1,=0,¢t=1; (570)
or where
or where
h=h;+2h;, k=k;+2k;, l=li=l]-=0, t=%. (672)

51-4. A procedure for phase determination.—We
start with a set of observed structure-factor magni-
tudes containing all the usual corrections except those
for vibrational motion and absolute scale. Define

x
0y = 05(8) = 0,(h, k, 1) =2f7?(k, k, 1), (573)
j=1
where s = sin §/4. Also define
e=ce@s)=eh,kl)=2 if h=k=0 or
if k=1=0 or ¢, (574)
if l=h=0
=¢g(s) = ¢g(h, k,1) =1 otherwise, (5-75)

since, in view of (5-01) and (5-02), these are the values
of (m9+m3)/n appearing in (3:12). Arrange the s values
in increasing order and divide the s range into intervals
in such a way that each interval contains approxzima-
tely 200 |F|%,, values. For each such interval compute

K = Ze0y| Z[F |G, »

where the sums are extended over the corresponding s
(or h, k,1) values appearing in the interval. Label
each interval by the s value at its center so that K

(5-76)
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appears as a function of s. Draw a smooth monoto-
nically increasing curve K(s) among these points.
Finally, by means of

1Fl® = | F|50sK(5) (5-77)
we obtain the values of the [Fyl? corrected for
vibrational motion and placed on an absolute scale
which are needed to compute the |E,,|2.

In view of (3:12), the normalized structure-factor
magnitudes |E;;|? are computed by means of

| Bl = | Frul?/eoy . (5-78)

At this point it is well to verify the following aver-
ages which are easily obtained from the distributions
for |E| given by us (Hauptman & Karle, 1953; Karle
& Hauptman, 1953):

(E|Y=0-798, (|E|2)=1-000, {|E[*)=1-596 , } _—
(|E|*)=8-000, {||E|*~1])=0-968, =Y
(579)
} hkl+0.
(5+80)

The averages given in (5:79) and (5-80) are sufficiently
accurate for large N. The more accurate formulas
needed when N is small (e.g. < 10) are readily ob-
tained from the distributions cited above.

Next, three summary tables are constructed. In the
first table the entries, for each fixed k; and [;, are

2 (|Bypl2-1) . (5-81)
<l

(|B|>=0-886, {|E|2)=1-000, {|E[3)=1-329,
(IE1%=2000, {||E|2—1])=0-736,

In the second table the entries, for each fixed [; and %,

are
= (1Bnep!*=1) - (5:82)

i

In the third table the entries, for each fixed A; and £;,

are
2 (1) (5-83)
Step 1.—Tentative phases gy, (either 0 or z) for
the normalized structure factors E,, are first ob-
tained for A, %, and ! all even and Akl = 0. These
phases are the intensity invariants, i.e. their values
are uniquely determined by the magnitudes of the
structure factors. For example, in view of Table 1,
the tentative phase of @, where h and k are both
even and kk =+ 0, is either O or 7z depending on whether
(5-83), with h; = h, k; = }k, is positive or negative.
In view of Table 1, to determine a phase @y, Where
h is even, we add (5-83) with &; = }A, k; = 0 to (5:82)
with h; = 4k, 1 = 0, and, according as this sum is
positive or negative, the value of @ is 0 or z. It is
thus seen that tentative values for the phases which
are intensity invariants are immediately obtainable
by inspection of the three summary tables. Of course
only those phases g will be reliably determined for
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which the corresponding |E,;| is large and the cor-
responding entry in the summary table is large, as
measured by the variances ¢ and g, (Table 1). The
exact number of phases so determined will depend of
course on the amount of data available relative to the
complexity of the crystal structure.

"Making use of the phases tentatively determined,
we use columns 7-10, 13 of Table 2 and find final
values for the phases ¢n by means of

1
1_’2 5 IEijl COS @;;
Ly xaii

, (5-84)
2 IE1}12
Y HoijHeij

h=h;+h;, E;= EhiEh,-, @i; = Pn;t Pn; - (5-85)

Equation (5-84) is implied by (5-45). The contribu-
tion of each term, however, is weighted by means of
the reciprocal of its standard deviation obtained from
Table 2.

We assign to @p the value 0 or & according as the
right side of (5-84) is positive or negative. In con-
junction with (5-84) use may be made of (5-64)—(5-72),
especially if the number of phases assigned tentatively
is so small that (5-84) is not statistically reliable. We
conclude that gy is probably 0 or z according as

1
21 En(1En,[?—1)
%

¥

(5-86)

is positive or negative, where z = 1/t if (5-64) is used
while z = 2/t if (5-69) is used. Occasionally discrep-
ancies between (5-84) and (5-86) will be observed.
These are to be resolved in an obvious manner de-
pending on the relative statistical weights of (5-84)
and (5-86).

Step 2.—Next, the largest |Ey,|, with Akl =0
and for which gy, is linearly independent, is selected.
The value, either 0 or z, of the phase @n, may be
specified arbitrarily. Then the values of all remaining
phases @y, which are linearly dependent on ¢y, and
for which hkl = 0, are uniquely determined by the
magnitudes of the structure factors. To find these use
is made of (5-84)—(5-86), in the manner described i
Step 1, together with the phases already determined.

For example, the phase ¢y, may be chosen to be
a phase @, i.e. &, is odd (ungerade), k, is even (gerade),
and I, = 0. Then the values of all other phases @,
and @, are uniquely determined.

Step 8.—The largest |Ey,|, with hyk,l, = 0, for which
®n, is linearly independent of @p, is next selected.
We then proceed as in Step 2 but replace h; by h,,
Now however, in addition to the phases @n, with
hkl = 0, which are linearly dependent on g¢p,, those
phases which are linearly dependent on the pair
®n;, Pn, are also uniquely determined. Again, use is
made of (5:84) and all phases the values of which have
been previously determined.
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For example, if @y, is chosen to be @,,, then the
phase @n, may be chosen to be ¢,,,. Then the values
of all phases @g,, and @, linearly dependent on gn,,
as well as those of all phases @,,,, linearly dependent
on the pair gpn,, gn,, are uniquely determined.

Step 4.—The largest |Ey,|, with hgkyl; = 0, for which
@n, is linearly independent of the pair ¢@n, @, is
selected. We then proceed as in Step 2 but replace
h, by h;. In addition to the phases ¢y, with Akl =
which are linearly dependent on ¢y, those which are
linearly dependent on the pair @p,, @n, or on the pair
®hys Pn, are also uniquely determined. The values of
all phases which have been previously determined are
used in conjunction with (5-84).

For example, if gn, = @ 0 and @n, = @, then
@n, may be chosen to be g,,. Then the values of all
phases @, and ¢, linearly dependent on @, as
well as those of all phases @,,, linearly dependent on
the pair @n,, @n,;, and those of all phases ¢,,,, linearly
dependent on the pair gn,, @n, are uniquely deter-
mined.

Step 5.—Making use of the phases already deter-
mined and columns 5 and 6 of Table 2 we find tenta-
tive values for the magnitudes of all phases @y which
are structure invariants (i.e. &, k, and [ are all even)
by means of (5-84) and (5-85). Improved values for the
magnitudes of these phases are obtained from columns
2-6 of Table 2 by using (5-84) and (5-85) until several
cycles of refinement yield no further changes in these
values.

Step 6.—We specify arbitrarily the sign of a phase
@n which is a structure invariant (whence its magnitude
is known from Step 5). The corresponding |Ey| should
be large while the value of {gn| should be close to 4.
In this way we distinguish between the two enantio-
morphous structures S and S’ permitted by the known
magnitudes of the structure factors. Final values for
the phases which are structure invariants are obtained
by repeated use of (5-84), (5-85),

S % 1/2 |Ey| sin @y

i = -87
sin gn A e ,  (0-87)
7 %04, xsz]
and
tan @n = sin @p/cos @ . (5-88)

Equation (5-87) is implied by (5-46). The contribu-
tion of each term, however, is weighted by means of
the reciprocal of its standard deviation obtained from
Table 2. Although the values of cos ¢ and sin ¢y, as
obtained from (5-84) and (5-87), may be inaccurate
(and even exceed unity) owing to inadequate or faulty
sampling, these errors tend to compensate in (5-88).
Hence, (5-88) should be used to compute ¢, whenever
possible, instead of (5-84) and (5-87) separately.

Step 7.—The values of all remaining phases ¢n are
obtained by repeated use of (5-84), (5-85), (5-87), and
(5-88), as many iterations being used as necessary.
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Table 3. The relation h = h;+h; and the values
#e, 3, and x, for space group P2,2,2,

hkl of Refer- Refer-
Pkl ence ence Condi-
desired hikil; hikil; tion Heij sy Hoif
hkl hilesl; hjkl; None 1 1 3
Rkl Rk  hikl;  None 11 3
Rkl R00  hikl; Nome  I1jy2 1/y2 %
1V
hil; even oo 1
Wl kO ROl { hi odd & T 1
ik; even oo 1
Wl hkO Okl z P odd % 1
k;l; even oo 1
hkl Okl; ROl { k:g A
. 7. kjeven 1/2)/2 oo 1
hiel k00 Okjl; { kjodd oo 12y2 1
lLieven 1/2/2 oo 1
hil 0k;0 hj0l; { 7 oo vz e 1
hjeven 1/2/2 oo 1
hEL 00 Ryki { by 0dd o 12v2 1
1. 7. hihjeven 1 o 1
RO REO  REO QRO T
. 7. kikjeven 1 oo 1
Okl Okd;  Okjl { toed o 11
L, even 1 o] 1
ROL RO RO { e e 30
Lk
kO RiOL Ok 11112 even oi . °;> }
ROl Rk Ok { 2,’; LT !
0kl hikO ROl { ’}Z? even i * !
hieven 1/y2 oo 1
hk0  hikiO - R;00 { ki odd v vz 1
kieven 1J]y2 oo 1
Okl Okd;  OK0 { roaa Y2 1
l; even 1/y2 oo 1
hOL - RO Ri00 { I; odd Y yz 1
hk0 h;00 0%k;0 None 3 o] 1
h00 h;00 k;00 None 1/y2 oo 1
RO hikli Rk { re e 3
okl hili Rty keven 1o o0 g
!
ROl hikds Rkl { 05
B0 Rkl hikl;  Nome  1/y2 oo %
R 1
o e owey (B0 LS
w e oy {Ehp L3l
ROU Rkl kO { e e 1
R0 hgel;  Ok;  Nome  1jy2 oo %

5-2. Space group P2,2,2,

Since the formulas for this space group are similar
to those for P222, it will suffice only to sketch briefly
the procedures for space group P2,2,2,, pointing out
in particular where these differ from those for P222.

5:2:1. Procedure for phase determination.—The nor-
malized structure:factor magnitudes are computed as
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in § 5-1-4 with the exception that now the extinctions,
i.e. those reflections E,,; with » =k =0, I odd, or
k=1=0,hodd, orl=% =0, k odd, are omitted
from consideration.

Next, three summary tables are constructed. In the
first table the entries, for each fixed k; and [;, are

= (=1 Byl -1) (5-89)
7
In the second table the entries, for each fixed I; and
hj, are

f‘? (=144 B2 —1) (5-90)

7

In the third table the entries, for each fixed 4; and k;,
are

2 (=1 By -1) (591)
I i

j=4(h+P)
=4(h—F)
=0
Ah-+R)
(h—)
0

h,

k/
hj=
k

j

In the procedure to be described we naturally make
use of these new summary tables rather than the ones
outlined in § 5-14 which were appropriate for the space
group P222.

Step 1.—Tentative values, either 0 or sz, for the
phases ¢, which are intensity invariants, i.e. such
that A=k=1=0 (mod 2) and 2kl = 0, are obtained
as in Step 1 of § 5-14 except that we now use the new
summary tables with the entries (5-89)-(5-91). Final
values for these phases are obtained as before making
use of (5-84)-(5-86) but with values of x», », and x,
as obtained from Table 3. However, the separate
terms of (5-86) are now multiplied by (—1)%*% or

0

}

h 1k

_1)}

2
]

. (E+2E')(E

Sy
'Sgl

P(E, B, |Ej|) = ;Vs% exp [— 3B — 1B — {E}] {l-l-é

(—D)¥*5 or (—1)4+% according as h; is of the form
0gg, g0g, or gg0 respectively. In this way (5-86) is
replaced by a new expression hereafter referred to as
(5-86).

Step 2.—Next, the largest |Ep,|, with Ak}, =0
and for which gy, is linearly independent, is selected.
The value of the phase gp,, of necessity chosen from
one of the pairs 0, 7 or +}n depending on the nature of
h;, may be specified arbitrarily, Then the values of all
remaining phases @p, which are linearly dependent on
®n, and for which 2 = 0 or £ = 0 or / = 0 depending
on whether 2, = 0 or &, = 0 or [, = 0, are uniquely
determined by the magnitudes of the structure factors.
To find these, use is made of (5-84) or (5-87), (5-85),
and (5-86’) in the manner described in Step 1, to-
gether with the phases already determined. It should
be emphasized at this point that, contrary to the
situation for space group P222, it is not sufficient that
>  ¢n merely be linearly dependent on gp,. It is further

o required of gy that a certain one of its indices be zero.
@, I‘?Q” This is not a contradiction of Theorem 8-02-2 of Haupt-
N man & Karle (1956) since Hypothesis B of this theorem
is not fulfilled. In fact we have not yet distinguished
between the enantiomorphous structures S and S’
permitted by the structure-factor magnitudes. For
wawme  Space group P222 this does not matter since a phase

| @n with Akl = 0 has the same value for both enantio-
® morphs. For P2,2,2,, on the other hand, the value of
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such a phase may depend on the choice of enantio-
morph, § or 8.

For example, the phase @n, may be chosen to be
a phase g@,,, whence its value is chosen arbitrarily to
be one of +3m. Then the values of all other phases
QPouu are uniquely determined.

Step 3.—The largest [Ey,|, with hyk,l, =0, for
which @y, is linearly independent of @y, is next
selected. We then continue as in Step 2 but replace
h, by h,. We need to proceed now with utmost caution.
Are all phases ¢p, with one index 0, which are linearly
dependent on the pair @p,, gn, uniquely determined
by the structure-factor magnitudes, as was the case
with P222? The answer is ‘yes’ if the structure in-
variant @n—@n,—@n, is an intensity invariant, i.e.
has the value 0 or =, for the value of such an invariant
is the same for both enantiomorphous structures S, S’.
The answer is ‘no’ if the value of this invariant is
+in, for such an invariant has the value +3}n for S
and the value —}x for S’. In the latter case we are
free to choose arbitrarily one of the two possible
values of @y (i.e. of pn—@n, —@n,), and in fact must do
so if we are to distinguish the two structures S, §’.

Let us assume that it is the former case which ap-
plies, and postpone for a while the choice of enantio-
morphous structure 8, §’. To this end, take @n, = @y,
®h, = Quu- Then the values of all phases ¢,,, and
@uuo are uniquely determined. To find these, use is
naturally made of (5-87) in the manner already de-
scribed.

It is interesting and easy to verify that, in the case
that the invariant @n—@n,—@n, = +im, (5:84) ac-
tually does yield no information concerning the value
of @p. This is an instance in which the joint distribu-
tion bears out in a rather striking fashion the results
of the invariant theory.

Step 4.—The largest |Ey,|, with hgkyl; = 0, for which
®n, 1s linearly independent of the pair gn, @n, is
selected. We then proceed as in Step 2 but replace
h, by hg. The remarks of Step 3 are relevant here too.

For example, let us take gn, = @ouws Pn, = Puuos
®n; = Qou,- Not only are the values of all phases
Pouws Puuo> Poug Which are linearly dependent on
@n,, Phy, Ph, respectively, uniquely determined by the
magnitudes of the structure factors, but so are the
values of all phases @, and @, linearly dependent
on the pairs @n,, gn, and @n,, gn, respectively. This is
a consequence of the fact that the value of each of the
structure invariants o, —@n,—@n, a0d @u0,— Pn,— Pn,
is 0 or x, hence the same for the two enantiomorphous
structures S8, §’. The phases ¢,g,, which are linearly
dependent on the pair @p,, @, are, on the other hand,
not uniquely determined by the magnitudes of the
structures factors since the values of the structure
invariants @,g,—@®n, —@n, are +4m, hence different for
the two enantiomorphous structures S, S’. The phases
Qguo also are not uniquely determined by the structure-
factor magnitudes despite the fact that these phases
are linearly dependent on ¢p,. Again the reason is the
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fact that the values of the structure invariants Pgun~Phy
are +34m.

Step 5.—Any phase gp,, with hk,l, = 0, is of neces-
sity linearly dependent on the triple @n,, gn,, @n, al-
ready chosen. For example, taking, as in Step 4,
Pny = Pouws Phy = Puuty Phy = Poug We May take gp, =
Qgu0» Where [Ey,| is maximal. Since the value of the
structure invariant @n,—@n, is +3mw, we may choose
either one of these values, 1.e. either of the values 0
or 7 for ¢p,, and thus, finally, distinguish between the
two enantiomorphous structures S, 8’. Now the phases
@0, a0d @, linearly dependent on the pairs @p,, gn,
and @n,, @n, respectively, are uniquely determined.
Finally the phases @, linearly dependent on the set
®hys Phys Phy Ph, are also uniquely determined. These
phases are all to be found by means of (5-84) and
(6-87) in conjunction with the values of all previously
determined phases.

Step 6.—All remaining phases are obtained as in
Step 7, § 5:1:4, by repeated use of (5:84), (5-85), (5-87),
and (5-88), referring to Table 3 for values of x,, %,
and .

It should be pointed out that, from the point of
view of phase determination, space group P2,2,2, is
more favorable than P222. In order to determine the
value of the structure invariant ¢, with Akl =+ 0,
both (5-84) and (5-87) are available to yield indepen-
dent estimates of cos @, and sin @y, for space group
P2,2,2,. For P222, however, only (5-84) is available
in the initial stages, and (5-87) may be used only
after the values of a sufficient number of phases
have been determined.

6. Type 2P22

Only the space group P422 belonging to Type 2P22
is here considered in any detail. Since the methods
are similar to those described in § 5, only a brief
sketch of the procedures used will suffice. The re-
maining space groups belonging to this type are
easily treated in a similar way.

6-1. Space group P422

We choose one of the two possible functional forms
for the structure factor as follows:

En=4 cos 27lz [cos 2mhx cos 2mky + cos 2k cos 2nhy],
(6:01)
= ~—4 sin 271z [sin 2 hx sin 2 ky —sin 2r kx sin 27 hy]
(6-02)

6-1-1. The intensity seminvariants.—Since the values
of the intensity seminvariants (those structure semin-
variants whose values, as a consequence of the space-
group symmetry, are either 0 or z) are uniquely
determined, for each fixed functional form for the
structure factor, by the magnitudes of the structure
factors, we first seek formulas involving these phases.
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Table 5. The relation hy+h,+hy = 0 and related probability distributions for space group P422
P(|Ey[, | Eql, |Egl, @1, @2r @3) Relation ¢
8| E\||E,|| By| exp [—|Ey|*—| By~ [ Hyl%]
X{I‘H‘%?z | B || Ey|| Bs| cos (<P1+<Pz+?’3)} byt ho+hy=0, ky+ky+k3=0, I, +1,+1;=0 2
4|Ey| | Ey| exp [— 3| Ey[2— E,f?— | Ey|?] hy=ky, by tho+hy=0, by +ky+ k3 =0, ) +1,+1,=0 2
V(2n) hy+hy+hy=0, ky+ky+ky=0, I, +1,—0,1,=0 2
X{1+‘SST72 B, | Byl By cos (%4_%4_%)} By dkegy byt byt hy =0, &yt eyt kg=0, Iy +-Ig=0, 1,=0 2y2
2 hy4-hyt-hy=0, ky+-Ey=0, I +lp+1,=0, k; =0 2
hyt-hy=0, ky+kg+ky=0, I +Ip+1,=0, by =0 2
Byt hy=0, ky+ky=0, [ + I+ 1;=0, hy=Fk,=0 4
Bythothy=0, ky+hz=0, l+1,=0, ky=1,=0 2y2
hythy=0, ky+ky+ky=0, l+15=0, by =1, =0 2y2
2|Eg| exp [— 3} By P — 3| E, 2 — | E,|%] hy= £k, hy= £ kg, hy+hy+-hy=0, by —kp+k3=0, 1, +1,+1;=0 2
27 hy= kg, by +hythy=0, ky+ky+-Fy =0, I+, =0, 1, =0 2
x{1+ts_‘s;=/’_2 ||| By||Ey| cos (<P1+<Pz+%)} hy=tky, ho= ko, hy+hy+h3=0, by —ky+k3=0, I,4+1;=0,1,=0 2y2
2 hy+hy=0, ky+ky+ky=0, l,+1,=0,1,=h,=0 2
hy= kg, hy+-hy=0, ky+ kgt ky=0, ly+1;=0, [, =h, =0 2y/2
hy= kg, by+hythy=0, kyt-ky=0, 1, +lp+13=0, k; =0 2
hy= kg, hyt-hy=0, ky+Ky+ k3 =0, I +Ip+1,=0, =0 2
hgt-hy=0, kyt-ky=0, 1,4+ 1;=0, hy=k,=I,=0 4
hy= kg, By+ Pyt hy=0, ky-+ky=0, ly+1,;=0, k, =1, =0 2y/2
ho= kg, hythy=0, ky+ kgt Ey=0, l+1=0, by =1, =0 2y2
hy+hy=0, kgt lg=0, I, +1,=0, ky=1,=h,=0 2y2
hothy=0, ky+ k=0, L+ 1, =0, ky =1, =k, =0 2y2
exp [— 3| B, |2— 3| B2 — 3| E,)?] hy=hoy, hy= 4k, hy= kg, hy+hyp+hy=0, ky+ky+loz=0, I, + Iy +L,=0 1
gn)sf*‘ hy=tky, hy=tky, hy= kg, hy+hythy=0, ky+ byt ly=0, [, 4+-1,=0,1,=0 2
X {1 +f§3—;’2 | By )| Eol| | cos (¢1+%+%)} hy= kg, hy= kg, by +hy=0, ky +-kp—k3=0, I, +1;=0, [, =h;=0 2y2
2 hy= kg, hy+hy=0, by +kyt+ky=0, ly+1,;=0, ; =hy =0 2
hyFhythy=0, oy +ky+Fy =0 1
hy= kg, hy+hy+hy=0, ky+ky+k;=0 y2
hy= £k, hy= b kg, by +hythy=0, ky—kp+kz=0 2
hy=ky, hy= ko, hy= kg, by +-hyt-hy=0, by +ky+ =0 )
hy= kg, hy= L kg, by +hythy=0, ky—ky+ky=0, l+1,=0, [, =0 2
Bythy=0, ky+ky=0, ly+1;=0, I, =ky=h; =0 2
hy= kg, by By =0, ky+ly=0, L+-1,=0, [, =ky=hy=0 2y2
hy= kg, hy= kg, by +hythy=0, ky+ oy =0, I, + 1, +1;=0, k, =0 2
o= kg, hy= kg, hy-+-hy=0, by + g+ hy=0, I; +-1,+1;=0, h; =0 2
hy+hythy=0, 1,41, 1,=0, ky =k, =ly =0 1
Koyt kgt ly=0, I+l 41y =0, hy=hy=hy=0 1
o= kg, hy= kg, Bythy=0, byt kiy=0, I, +Ip+1;=0, hy =k, =0 2
hy=kky, hy= kg, By+hy=0, ky+-ky=0, I, +-1;=0, by =k, =1, =0 2y2
kot kg=0, 1 +1,=0, hy=hk,=hy=l,=h;=0 2y2
LAl ly=0, hy=k;=hy=k,=h,—k;=0 2
hy= kg, hy= kg, by +hg+hy=0, kytkig=0, l+1;=0 V2
hy= kg, hy= L kg, hyt-hy=0, by + kgt k=0, l+1,—0 Ve
hy= kg, by +hy=0, ky+lez=0, L+1,=0, k; =1, =h, =0 2y/2
hy= k-, hy+-hy=0, ky+ k=0, ly+1,=0, hy=I,=k,—0 2y2
hythy=0, kyt-ky=0, by =l =hy—l,—1;—0 2
hy= gy hy+hy=0, ky+-ky=0, by =l =hy=l=1,=0 2
Byt hythy=0, ky=1 =ky=l=ky=1;=0 V2
kythytky=0, by=l;=hy=ly=hy=13=0 V2



650

Table 6. The relation h = h;+h; and, together with
(5-84) and (5-87), related expected values and variances
for space group P422

hkl of @ux Reference Reference
desired and  hik;l; and hyk;l; and
conditions  conditions conditions  xgij cij  Ksij
hkl* hikl; hikjl; 3 1 1
hkl;h=+k hike;l; hijkil; 3 1 oo
Rhkl . hikily; hi= L ks hijkil; 3 1 1
hkl; h= 4k hikid;; hi= 1 k; hikjl; 3 1 oo
hkl hikilis hi=Fk; hikylis hj=tk; 1 Py oo
Rkl;h=+k hikilis hi= ki hikilj; hj=tk; 1 1 oo
hkl hik;0 hikil; 3 1 1
hkl hiki0; hy= 1 k; hykjl 3 1/y2 1/y2
hkl; h= 4k h;k;0 hikil; 3 1 00
hkl;h=+k hik;0; hi=TFk, hik;l; + 1/y2 oo
hkl; h=+k hiki0 hikilis hji=Fk; 1 3 (o)
hkl; =4k hikiO; hj=+k; hikilj;hj=+k; 1 1/y2 oo
hkl h;0l; hikil; 3 1 1
hkl; h=4k h;0L; hikili 3 1 oo
hkl hi01; hikilys hj=t+k; 1 3 e}
hkl; h=+k h;Ol; h;k]'lj shi=+k 1 3 oo
hkl Ok;l; hijkil; b3 1 1
hkl;h=+k Ok;l; hikil; 3 1 oo
Rkl Okil; hikiliskj=+k 1 3 oo
hkl; h=+k 0k;l; hikil;s hj=4k; 1 ) 00
hkl hik:0 Okil; 1 3 o)
Rkl hikiO; hi=+k; Okl 1 1/2y2 oo
Rkl h=+k Rik:0 Ok;i; 1 3 oo
hkl; h= 4k hikiO; hy=Tk; Ok;l; 1 1/2y2 ‘oo
hkl 007; Fykejl; 3 3 3
hkl; h=41k 00; hikilis hi=4k; 1, % 0o
hkl 007; hjk;0 1 } 0o
hkl; h=+k 001; hik;0; hj=+k; 1 1/2/2 oo
hkl h;00 hikit; 3 1l/y2 1/y2
hkl k;00 hikilis hj=+k; 1 1/2Y2 oo
hkl; h=+k h;00 hjkil; 3+ 1/y2 oo
hkl; h=+k h;00 hikily; hj=%k; 1 1/]y2 oo
hkl 0k;0 hikil; + 1/y2 1/y2
hkl 0k;0 hikilis hj=+k; 1 1/2)2 oo
hkl; h=41k 0k;0 hikjl; $ 1/y2 oo
hkl; h=+k 0k;0 h,‘kilj; hj:bk‘]' 1 1/y2 o0
hkl h;00 Ok;l; 1 1/2y2 oo
hkl; h=+k h;00 Ok;l; 1 1/2)/2 o
hkl 0k;0 hi0l; 1 1/2y2 oo
hkl; h=+Fk 0k;0 hi0l; 1 1/2/2 oo

* h== 4k unless specified.

The phases which are structure seminvariants are the
@uq Where h+k and 7 are both even. It is then readily
verified that the phases which are intensity semin-
variants are the @o, @0 Pggor Punos Pragy a0Dd Pprp*

(In this notation ¢, for example, refers to those
phases whose first index is zero and whose second and
third indices are both even but not necessarily equal.

* The phases which are structure invariants are the @gq
while those which are intensity invariants are the @qgg, @yog,
®gg0, Phrg, and @prg Where b is even.
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However, in ¢y, the first two indices are equal and
the third is even.)

We are thus led to consider first normalized struc-
ture factors Ey, Ehj, where ¢y is an intensity semin-
variant. We obtain by the usual methods the relevant
joint probability distributions shown in Table 4. Two
additional columns, not listed in Table 4 in order to
save space, are obtained by symmetry. One, headed
@ogp» is obtained from that headed ¢, by inter-
changing 2 and k& and by interchanging A; and k.
The other, headed @y, is obtained from that headed
@400 by the same substitutions.

6-1-2. The relation h = h;+h;—We use the methods
of § 5-1-2 to obtain relevant joint probability distribu-
tions, expected values, and variances. Our results are
summarized in Tables 5 and 6, where the notation of
Table 2 is used. Equations (5-84), (5-87) and (5-88) are
then valid for space group P422 also. Table 6 is an
immediate consequence of Table 5. Table 6 may be
supplemented by entries yielding the values of phases
@z With kkl = 0. If h; is h;hl; or satisfies Akl = O
and h; is khl; or satlsﬁes h,k,l, = 0, then it is fQund
that xm, =1, x4 = 1ft; otherwise x,; =%, x4 =
2/t. Note that sy = x.;, except when, as a conse-
quence of space-group symmetry, the values of the
reference phases pn; and gy, are either 0 or 7 or when
the value of the phase of mterest eph is either 0 or 7;
then sy = oo.

Although miscellaneous relations. analogous to those
given in § 5-1-3 are valid here too, we do not list these
explicitly.

6-1-3. Procedure for pha.se determznatwn —We-obtain
a set of |[E|? values exactly as in.§ 5-1-4 except that
& = (m3+mf)[n is now defined by means of Table 7
instead of (5:74) and (5-75).

Table 7. The values of ¢ = (m3+mi)[n for
space group P422

Index &
Rkl == 0

hkO

ROl } h= +k 1
0kl

hkO,h = +k 2
h00, 0kO 2
007 4

If Rkl = 0 or h = +k the averages in (5:79) obtain.

If hkl+0 and k & Lk the averages in (5-80) obtain.

Next, in view of Table 4, four summary tables are

constructed. In the first table, the entries, for each
fixed k; and [;, are

Eni2—1). 6-03

h}i j(] wieil>—1) (6-03)

In the second table, the entries, for each fixed /; and

h;, are

k,fhj (1B —1) . (6-04)
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In the third table, the entries, for each fixed h; and
k;, are

3 (| Bpgyl2—-1) . (6:05)
lj+0

In the fourth table, the entries, for each fixed m and
l;, are

3 (Buggle-1) . (606)
hjtkj=m=+0

Next, to find the value of a phase @, = @,
where the corresponding |E| is maximal, we employ
(6-06) with m = k. If & is odd and [ == O then, in view
of Table 4, g, = 0 or m according as (6-06) is positive
or negative. If & is even and ! 4= 0 we need to add the
term (1/)/2)(|E 45,412 —1) to (6:06) and then, again
because of Table 4, g, = 0 or & according as the
sum is positive or negative. Similar remarks hold if
l=0.

Again, to find the value of a phase @u; = @,
where |E| is maximal, we employ (6-05). Assume
k= k. We first use (6-05) with h; = }h, k; = 4k
and then use (6-:05) with h; = §(h+k), k; = $(h—Fk) in
order to compute the approximate values of E+2E’
and 2E+E’ (Table 4). Since |E|, |E’|, and |E”| are
in general all known and |E| is large, the sign of £
can ordinarily be deduced from the computed values
of E4+2E' and 2E+E". Similar remarks apply if
h = +k. In this way the values of many of the P05
with large corresponding |E|, may be found.

Next, to find the value of a phase @; = @,40, Where
|E| is large, we again employ (6-05) with &; = }(k+k),
k; = }(h—k) in order to compute 2E+E'* (Table 4).
If |E"| is small the sign of E is immediately deduced.
If |E"'| is large, the sign of E’’ will probably already
be known from the previous paragraph and the sign
of E can again be inferred.

The remarks of the previous paragraphs illustrate
how Table 4 is to be used in conjunction with the four
summary tables given by (6-03)-(6-06). It is apparent
that the effective use of Table 4 will enable one to
determine tentative values of many phases gy, with
large corresponding |E|, which are intensity semin-
variants.
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From this point on the procedure parallels very
closely that for P222, with one important difference.
In order to fix the origin we specify the values of
only two phases @p,, gn, constituting a linearly sémi-
independent pair (rather than three as for P222). For
example, we may specify that the values of @n, =
Panu and Of @p, = @0, be zero, where naturally”|E), |
and |Ey,| are large. Furthermore, the magnitudes of
all phases which are structure seminvariants are
determined (as for P222). Choosing one, say Phgs
which is not an intensity seminvariant and such that
|9n;| ~ 47 and |Ey,| is large, we specify its sign ar-
bitrarily, thus distinguishing between the enantio-
morphs 8, 8§’ permitted by the given set of structure-
factor magnitudes. Then the values of all remaining
phases are determined as for P222, using Tables 5
and 6, with additional entries in Table 6 corresponding
to Akl = 0, and easily derivable from Table 5.

7. Types 3P;2 and 3P,2

The foregoing detailed discussion for Types 1P222 and
2P22 reduces to routine the problem for the remaining
types. The seminvariant theory shows that for these
types only one phase is to be suitably specified in
order to fix the origin uniquely, provided, of course,
that the functional form for the structure factor has
been chosen. As already appeared in Type 2P22, some
of the average values yield the values of cerain linear
combinations of the structure factors rather than that
of a single structure factor. Care should be exercised
in identifying the linear combinations which arise.
Although the computations for each space group are
routine, they will in general be quite tedious.
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