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Joint probability distributions and relevant expected values and variances are obtained for selected 
(but typical) non-centrosymmetric space groups belonging to the four types 1P222, 2P22, 3P12, 
3P22. These lead to formulas for phase determination the analysis and interpretation of which 
constitute the major goal of this paper. The analysis is strongly dependent on the theory of in- 
variants and seminvariants, and the agreement between this theory and certain consequences 
of the probability theory is noteworthy. 

1. Introduct ion 

In a previous paper (Hauptman & Earle, 1953) it was 
pointed out that  'the concept of the joint or compound 
probability distribution forms the basis for a direct 
attack on the phase problem' since the probability 
distribution of a phase may thereby be obtained once 
a set of structure factor magnitudes or phases is kn(~wn. 
The details of a program for phase determination based 
on this idea have been carried out for all centro- 
symmetric space groups (Hauptman & Karle, 1954, 
hereafter referred to as Monograph I). The purpose of 
this paper is to derive relevant probability distribu- 
tions and to describe possible procedures for phase 
determination based on them for typical non-centro- 
symmetric space groups in the four types 1P222, 
2P22, 3P12, 3P~2 (Hauptman & Karle, 1956). These 
four types comprise roughly 45% of all the non- 
centrosymmetric space groups. They are characterized 
by the property that  each component of their invariant 
and seminvariant moduli is two. The remaining types 
in which zero, three, or six appear as components of 
the moduli will be treated at a later date. Detailed 
computations are not carried out for Category 3, but 
the methods described for Categories 1 and 2 carry 
over to Category 3 in a routine way. 

Although the joint probability distributions are 
rigorously derived, their prime purpose here is as a 
heuristic device. The formulas for phase determination 
suggested by them are analyzed ab initio and their 
exact  significance and limitations critically evaluated. 
One important conclusion is that  the presence of 
grossly dis-similar atoms (e.g. a small number of 
relatively heavy atoms) is more likely to prove a 
serious obstacle to the successful application of these 
methods than was the case for the centrosymmetric 
space groups. Even in the case that  all atoms are equal, 
the number of data needed may well exceed the number 
contained within the copper sphere. No statement 
concerning the general applicability of these proce- 
dures will be made at this time. However, this paper 

supplies the statistical tools for estimating how reliable 
the methods are likely to be in any particular applica- 
tion. 

2. Invar iants  and s e m i n v a r i a n t s  

A knowledge of the theory of the invariants and semin- 
variants (Hauptman & Karle, 1956) was found to be 
an invaluable aid in gaining a preliminary survey of 
procedures for phase determination. This theory 
enables one to decide which phases are ¢ etermined 
by the crystal structure and which by the magnitudes 
of a sufficient number of strncture factors. I t  also 
enables one to fix an origin by first selecting a func- 
tional form for the structure factor and then specifying 
in a suitable way the values of an appropriate set of 
phases. Again, it provides a means for distinguishing 
between the two enantiomorphous structures S and S' 
(related to each other by reflection through a point) 
which are permitted by the given set of structure 
factor magnitudes. Finally, the theory indicates which 
joint distributions will be of value in determining 
phases, and in this way motivates the analysis. 

In order to illustrate the role played by the in- 
variants we consider in some detail the space group 
P222 belonging to the type 1P222. The phases which 
are intensity invariants (and therefore also structure 
invariants) are all phases ~hkl, where h, k, and 1 are 
all even and at least one of h, k, 1 is zero. These phases 
are the structure invariants the values of which (either 
0 or ~) are uniquely determined by the intensities. 
Only the magnitudes of the remaining phases ~hkz 
which are structure invariants, i.e. for which h, ]c, and l 
are all even and hkl :~ 0, are determined by the in- 
tensities. The sign of any such phase (the magnitude 
of which is different from 0 and ~, and preferably 
close to ½~) may be specified arbitrarily, thus distin- 
guishing between the enantiomorphous structures S 
and S" permitted by the intensities. Once this is done 
then the values (not merely the magnitudes) of all 
phases which are structure invariants are uniquely 
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determined. Finally, in order to fix the origin, three 
phases ~ : ~ ,  i -- 1, 2, 3, one index of each of which 
is zero and constituting a linearly independent set, are 
chosen. The value of each such phase is either 0 or g. 
Ei ther  one of the two possible values for each such 
phase may  be chosen and then the values of all re- 
maining phases are uniquely determined. 

For space group P212121, also of type 1P222, the 
same procedure as tha t  just  described may be used. 
However, it is expedient to alter the procedure some- 
what, and this will be described in detail later. 

3. The  n o r m a l i z e d  s t r u c t u r e  fac tor  E 

The structure factor Fh is defined by means of 

Fh  = ]Fh[ exp [iqh] = X + i Y  , (3"01) 
~v/n 

X = X , f ~ ( x j ,  yj, zj, h ) ,  (3.02) 
j = l  

lV ln" 
Y = ~Y, f ~ ( x i ,  Yi, zi, h ) ,  (3.03) 

1=1 

where N is the number of atoms in the unit cell, n is 
the order of the space group, f ~  is the atomic scattering 
factor, x 1, y# zj are the coordinates of the j t h  atom, 
and ~ and ~] are trigonometric functions which depend 
upon the space group; e.g. for P1, 

= cos 2 g ( h x + k y + l z ) ,  (3.04) 

= sin 2g(hx  + k y + lz) .  (3"05) 

For  non-centrosymmetric structures having atoms 
in general positions only the probability distribution 
for the magnitude [Fhl of a particular structure factor 
(neither real nor pure imaginary as a consequence of 
space group symmetry)  as the atoms in the asymmetric 
unit  range uniformly and independently throughout  
the unit  cell is given approximately by (Hauptman & 
Karle, 1953, equation (24)) 

P R ( X )  -~ nx  exp ( - - n x 2 / 2 m 2 ( ~ 2 )  , (3"06) 
m2(~ 2 

where 

and 

l l l i l  1 
m ° = ~ 2 d x d y d z .  O, (3.07) 

0 0 0 
1 (,1 "1,1 

lV/n 
a2 = ~ f ~  = n _ , ~ f ~ .  (3.10) 

j=z i=1 

Evident ly  both m 2 and a2, and therefore PR(X), 
depend on h. However, it turns out tha t  for each space 
group the number of different distributions PR(X) is 
finite. From (3-06) the average of any power of IFI 
may be found. In  particular, 

( I F [ ' )  = 2m2(~2/n. (3.11) 

l~lext we define the normalized structure factor Eh 
by means of 

Fh 
El, = ((too +m~)(~2/n) ½ . (3.12) 

Equat ion (3.12) is valid also for the centrosymmetric 
space groups and for those structure factors for non- 
centrosymmetric space groups which, as a conse- 
quence of space-group symmetry,  are either real or 
pure imaginary (cf. Monograph I, p. 34), since in 
these cases one of m °, m~ is identically zero and 
equation (3.15) of Monograph I (to which (3.12) now 
reduces) applies. Evidently,  the phase of Eh is equal 
to ~h, the phase of Fh. From (3.11) it follows tha t  the 
average value ( [Ehl2~r  of the square of the magnitude 
of a particular normalized structure factor as the atoms 
in the asymmetric unit  range uniformly and inde- 
pendently throughout the unit  cell is unity, i.e. 

<lEh[2)r = 1 .  (3.13) 

I t  is a fact of fundamental  importance that ,  in general, 
the average of [E] ~ over x, y, z is the same as the 
average of IEI 2 over h, k, 1 (cf. Monograph I, p. 35). 
In other words, for  a f i xed  structure, the average value 
([Ehl~)h of the squares of the magnitudes of the 
normalized structure factors as the vectors h range 
uniformly over all reciprocal space is unity,  i.e. 

(IEhJ2)h---- 1 .  (3"14) 

As with centrosymmetric structures, (3-14) is im- 
portant  in tha t  it is the basis, in an obvious way, of 
a procedure for correcting observed intensities for 
vibrational motion and for put t ing them on an abso- 
lute scale (cf. Wilson, 1949). 

In terms of the normalized structure factor, the 
probability distributions (3.06) assume a very simple 
form. Denoting by P ( x ) d x  the probability tha t  ]E[ 
lie between x and x + d x ,  where x >_ 0, (3.06) implies 

P(x)  = 2x exp [ - x  2] . (3.15) 

I t  is seen tha t  P(x)  has the same form for all vectors 
h and for all the non-centrosymmetrie space groups. 

4. J o i n t  d i s t r i b u t i o n  

As in the case of the centrosymmetric crystal, the joint 
distribution is useful for deriving the probabil i ty 
distribution of the m~gnitud~ and ph~s~ of ~ ~tructure 
factor when certain magnitudes or phases are specified. 

I t  is convenient to use the abbreviations 

~q -- ~(x, y, z, hq),  (4"01) 

~, = V(x, y, z, h l ) .  (4-02) 

Denote by P(~I, . . - ,  ~ ,  ~1, . . . ,  ~s) the joint probabil i ty 
tha t  ~q lie in the interval ~0, ~0 + d~Q and tha t  ~,  lie in 
the interval ~7o, ~o÷d~,, Q =  1, 2, . . . ,  r; a =  1,2, 
. . . ,  s. Let  PI(A1,  . . . ,  A r, B 1, . . . ,  B ~ ) d A 1 . . . d B ~  be 
the joint probabili ty tha t  Xq lie in the interval 
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Aq, Aq+dA~ and Y, lie in the interval B~, B,,+dB,,, 
= 1, 2, . . . ,  r; a = 1, 2, . . . ,  s; where Xo and Yo 

are obtained from (3-02) and {3.03) by  replacing h by  
h0 and h~ respectively. We prove next  the fundamental  
result 

Pz(Az, . . . ,  A~, B1, . . . ,  B,) 

, f  l °0 .) ~ - -  . . . (2~)~+ ~ exp - i  B,,v 
- -OO ¢ 2 - - 0 0  . - - - - -  

~v/n 
x I Iq( fnuz . . . .  ,f#u, ynvz, . . . f~ : , ) duz . . . dvs ,  (4.03) 

i---1 

where 

q ( f : .  . . . , f : . f : .  . . . , f . v ~ )  

. . . .  ( ~ ,  . . . ,  ~ ,  ~ ,  . . . ,  ~ )  
- - (30  

x exp i q~ouo+i ,,~,,v d~l...d~s, (4-04) 

and 
f;~ = f ~ ( ~ ,  ~ ,  ~) = / ~ ( % ) ,  (4.05) 
f:,, = f:(h:,, k~, I~) = f/(h~). 

The probability, Q(A z, ..., A,, .B z, ..., B,), that X o 
be less than  Ao and Y~ be less than  B~ for every 

= 1 ,2 ,  . . . , r ;  a =  1 ,2  . . . .  , s ,  is 

Q(Az, . . . ,  A,,  B z, . . . ,  B~) 

ICO l CO~/" . . . .  I I p  (~n, . " ,  ~#, ~n, " " ,  ~#) d~n" " dr1# 
--co --co ~'=i 

× ~ T(~, ..., ~:~) ~ T(~,~, ..., ~/~o), <4.06) 
~=1 a = l  

where 

T(~I~, . . . ,  ~/~o) 

T(V~ . . . .  , V,v/,,o) 

and 

1 1 ¢co exp [i(XQ-Aq)uq]duq 

2 2~ ~_co iue 

= { 1 if X°  < A~ } (4-07) 
0 if X o > A o ' 

1 1 ~o~ e x p [ i ( Y . - B . ) v o ] d v .  

2 2~ ~_CO iv,, 

_ _ { 1  if Y , , < B , ~ } ,  (4"08) 
0 f f  Y,. > B,, 

~j~ = ~(x# y~-, % hq), } (4.09) 
Vj,, = V(xj, yj,  % h i ) .  

By differentiating (4.06) with respect to A z , . . . ,  
A~, B z, . . . ,  B~, we obtain (4.03) and (4.04), since 

_Pz (A1, . . . ,  A,., B 1, . . . ,  B~) 

_- ~+~Q(Az, . . . ,  A, ,  B z, . . ., Bs) . (4.10) 
O A z . . .  OB, 

Equations (4.03) and (4.04) are the starting point 
from which the joint probabil i ty distributions for the 
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magnitudes and phases of the structure factors may  
be derived on the basis tha t  certain sets of magnitudes 
or phases are known. As in the derivation of (4.03), 
the atoms in the asymmetric unit  are assumed to range 
at  random throughout the unit  cell. Useful distribu- 
tions are then obtained by making use of a knowledge 
of the magnitudes or the phases of a specified set of 
structure factors. The formulas to be derived are of two 
types, those requiring a knowledge of intensities only, 
and others requiring a knowledge of the phases also. 

In  order to express (4.03) in a more useful form we 
first find the Maclaurin expansion of the exponential 
in (4.04) : 

q( f  n uz, . . . ,fj , .u,.,fjzvz, . . . , f # v , )  

f S\, . . . .  (~n, " " ,  ~#, ~#, " - ' , ~ # )  
- - C O  

r 8 2 

2! 

+ N  "" " 

The terms of (4.11) are all of the form of a mixed 
moment  

ICO I'CO ~ 
~ ]  "~ = . . ~  _~"  • • )COp( i , .  • . ,  ~,, ~ . . . .  , ~ )  

× ~ ' . . . ~ v ~ ' . . . v ? d ~ . . . d y e .  (4.12) 

Interpret ing (4-12) as an expected value, or average, 
of ~ ,  : ' ~ '  ~' • . .~r  '11 . ' - f l ~ ,  we infer tha t  

- '~"'"~ = y ,  z, h i ) . . .  ~ ( x ,  y ,  z, h~) 
~r~z""  ~ o 0 

x ~ ( x ,  y, z, h l ) . . .~ , e (x ,  y, z, h] )dxdydz .  (4.13) 

I t  may  be seen from (4.13) tha t  the evaluation of q 
from (4.11) and (4.12) does not require an explicit 
expression for P(~z, . . . ,  ~,, ~z . . - ,  ~) .  I t  is sufficient 
to evaluate the moments m ~  "'''s • ..xr from (4.13), a 
relatively simple (but often tedious) matter ,  given the 
functions ~Q and ~,, which are known for all the space 
groups. I t  is thus seen tha t  the exact nature of the 
interdependence of the various structure factors is 
revealed by the values of the mixed moments (4.13). 
As a general rule these moments vanish. However, for 
suitable relationships among the vectors hQ, h~, @ = 
1, . . . ,  r, a = 1, . . . ,  s, which depend upon the space 
group (and are easily determined for each space group), 
these moments differ from zero. In  this way those 
structure factors most int imately related to any given 
one are determined. Our next  task is to derive certain 
of the significant non-vanishing mixed moments (4.13) 
and to express the probabili ty distributions in terms 
of them. I t  is important  to observe tha t  in general not 
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only m a y  r be different from s bu t  the  sets h 0, ~ = 1, 
. . . ,  r, and h, ,  a = 1, . . . ,  s, need have  no elements 
in common. I t  will be seen t ha t  this general formula- 
t ion will enable us to obtain information concerning 
three-dimensional  phases from one- and two-dimen- 
sional data ,  and vice versa. 

( 2 A ~ + f i : ~ + / ~ )  H q = e x p  - i  ~ 2 2 2 
i=1 xi=l 

x{l-i/~=1~f, ff~-2(u,u~4-u,v~)}. 

5. T y p e  1/)222 

Only the space groups P222 and P2~212 ~ belonging to 
Type  1P222 are here considered in detail. The re- 
maining space groups belonging to this type  are 
readi ly t rea ted  in a similar fashion. 

5.1. Space group P222 
For  this space group 

~h = 4 cos 2m~hx cos 2gky cos 2adz, (5.01) 

~,, = - 4  sin 2ghx sin 2m~ky sin 27dz . (5.02) 

5-1-1. The intensity invariants.--Since the values of 
the  in tens i ty  invar iants  (either 0 or ~z) are uniquely 
determined by the observed intensities, we first seek 
formulas involving these phases. I t  is readily verified 
t ha t  the  phases ~h~z which are in tens i ty  invariants  
have all indices h, k, 1 even and a t  least one index 
(h or k or l) zero. Hence we are led to consider s t ructure  
factors Fh~, F ~ ,  the  indices of which satisfy 

h 1 = 2 h ~ # 0 ,  k 1=2k9= t  =0, l ~ = 0 ,  1 2 # 0 .  (5.03) 

Equat ions  (4-03) and (4.04) become 

P~ (A1, As,  B2) 

- -  1 I°° f°° I°°_ooex-p[-i(A~u~+A2u2+B2v2) ] (2~)3 _~ _~ 

~v/4 

x I lq(f i lul ,  fpu~,fpv2)duldu2dv~, (5.04) 
i=1 

q(A~.f.u2,f:a 

i ilf -- exp [i(fi~lu~+fi2~u~+fpn~v~)]dxdydz. 
0 o 0 (5.05) 

Using the  Maclaurin expansion of the exponential  in 
(5.05), this  becomes 

2 2 00 2 2 00 2 2 02 
q = 1-½(f~u~m~o+f~u~mo~.+f~v~.moo) 

( U l U 2 m 1 2  -[ -UlV2mlo ) -[- . . . .  (5-06) _(i[2)fiif22 2 oo 2 02 

where only the  non-vanishing mixed moments  have 
been re ta ined in (5.06). I t  is readily verified from 
(5.01) and (5.02) tha t ,  in view of (5-03), the  values of 
these moments  are given by  

oo = 4, oo o3 oo o3 2 (5.07). 
m 2 o  mo2 = moo = m 1 2  - -  t a l C  = . 

Subst i tu t ing from (5.07) into (5.06) and using an 
analysis like t h a t  on p. 33 of Monograph I, we find 

(5.08) 

Subst i tut ing into (5.04) and evaluat ing the  result ing 
integrals, one obtains 

i=1 i=1 i=1 / 
PI(A1, A~, B2) = 

J 

~=1 
× 1+  ~ v - - ½ (  ~,?_] 1 , (5"09) 

( Z:ll 
\i=1 / \1=1 / \ ~=1 

where now all indices of summation range from 1 to N. 
Transforming to polar coordinates and referring the 
final distribution to the normalized structure factors E 
ra ther  than  the s t ructure factors F ,  (5.09) finally 
becomes 

2lEvi exp (-½E~-[E212) 
P(E1, IE21, ~,.) -- (2~r)3/,. 

Z fjlfj~ 
i=1 iv E l ( [ E 2 1 2 - 1 ) ,  (5-10) 

where P is the  joint  dis t r ibut ion of E 1, lEvi, and q02, 
and ~9 is the phase of Eg. Since (5-10) is independent  
of q~, the  joint  distr ibution of E 1 and [E2] is easily 
obtained. Although our analysis does not  require us 
to do so, in order to simplify the  la ter  computat ions,  
we make the  usual assumption t h a t  

f~h = Z j fh ,  (5"11) 

where Z i is the  atomic number  of the  j t h  a tom and 
fh is independent  of j .  We finally obta in  from (5.10) 

21E21 exp ( -½E~-IE2I  ~) 
P(E1, lEvi) -- (2~)½ 

{ Lqa E l ( lEvI2-1)}  (5.12) x 1 + ~-~2/2 

where 
~v 

& = 2 : z 7  (5.13) 
i = 1  

and P(E 1, ]E2] )dEld[E2] is the  probabi l i ty  t h a t  E 1 lie 
between E 1 and E l + d E  1 and t h a t  IE2] lie between 
]E~] and [Eg]+dlE~]. 

For  a known value of E 1 the  expected (or average) 
value of (]E~]~-I) is readily found from (5.12) to be 
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f ~ (2g)~P(E 1, x) S 3 
o (x~-l)  exp (-½E~) dx =S~/--~E~. (5.14) 

Equa t ion  (5.14) suggests t h a t  we consider the distribu- 
t ion of ~a~, where 

(~hk ---- E2h,2k,o--(~22/2/S3) <]Eau]2-1>z , (5.15) 

as h and  k range uni formly  and independent ly  over 
the  integers. For  each fixed h, k the average on the  
r ight  side of (5.15) is t aken  over all integers 1 + 0. 
First ,  f rom (3.02), (3.03), (5.01), (5.02), and (5.11) 

9/4  
X ,  = 4 f , . Z  Z i cos 2x~hx i cos 2xkyi cos 2xlzl , (5.16) 

i=1  

27/4 
Yh = --4fh .Z Zi Sin 2xhxi sin 2nkyi sin 2nlzl, (5.17) 

i=1  

X~, = 16f~ ~ ZiZ  i, cos 2x~hx1 cos 2xehx i, 
i,~' 

× cos 27eky i cos 2xky i, cos 27dz i cos 2xdzf,  (5.18) 

Y~, = 16f~, 2 Z iZ  i, sin 2xhx i sin 2xhx i, 
~,~" 

x sin 2xkyi sin 2~kyi, sin 2xlz~ sin 2xlzi, , (5.19) 

X~ = 16f~ ,Z Z~ cos ~ 27ehx i cos 2 2xky i 
i 

× (½+½ cos 4xdzi)+R~, (5.20) 

Y~ = 16f~ ~ '  Z~ sin 2 2ghx~ sin 2 2n/cy~ 
i 

× (½-½ cos 4xlz~)+R, ,  (5.21) 

where R~ and R,  are obta ined from (5.18) and (5.19) 
by  replacing 2 by  ~ : .  Since 

cos 2xlz~ cos 2~lz~, 

= ½ cos 2xd(z~+zy)+½ cos 2nl(z l -z i , ) ,  (5.22) 

sin 2xelz i sin 2xdzf 

= - ½  cos 2nl(zi+z~,)+½ cos 2xl(z l -zr)  , (5.23) 

we conclude t h a t  

<R~>z = <R~>z = 0 ,  (5.24) 
provided t h a t  

zi±zi, ~ 0 if j + j '  . (5.25) 

F rom (3.01), (5.20~), (5.21), and (5.24) we find, as- 
suming h ~ + k" ~= 0, 

<Xh + Yh>Z (5.26) <[Ehkzl2>z <lFn~zl2>z 2 2 
N 27 

f f , .x  /f, 2 
j=~ / = z  

27/4 
8 2 Z~ (cos 2 27ehx i cos 2 2x~ky i + sin ~ 2ghx i sin z 2x~kyi) 

i = l  

(5.27) 
27/4 

4 2 Z~(1 + cos 4xhx  i cos 4xkyi) 
= ; = 1  , (5.28) 
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27/4 
4 2," Z~ cos 4~hxj cos 4.uky i 

<IEhkzl ~-l>z-- +=1 
S,  

However,  from (5.16) 

(5.29) 

27/4 
4 ~ Zj cos 4~hxj cos 4~kyj 

E2h,2k,0 _-- X2h,2k,O --__ i= 1 

(5.30) 
since 

Ir2h,2k, o = 0 from (5.17). 

F rom (5.15), (5-29), and (5"30) we get  

) dh~ = 4 / :  Z~ cos 4~hxj cos 4~ky j .  (5"31) 
j=l $3 

Now (see equat ion (1.25) and Appendix  of Mono- 
graph I) it  is well known tha t ,  as h, k range uniformly 
and independent ly  over all the  integers, Oh~ is ap- 
proximate ly  normal ly  dis t r ibuted about  the mean  of 
zero with a var iance al, given by  

82 s s, 
o" 1 j/ 1.  (5.32) 

Hence (5.15) m a y  be wri t ten  

E~.h,2~,o ~ (~ / ' /$3)< lEhk~l ' - l>z ,  (5.33) 

where the symbol  ~ means p robably  equal. More 
precisely, the  values of E2h,2k,0 are normal ly  dis t r ibuted 
about  the mean value given by  the  r ight  hand  side of 
(5.33) with the variance al, given by  (5.32). The im- 
portance of this result  is due to the  fact  t h a t  we can 
now est imate  how often the  r ight  side of (5.33) can 
be expected to ]cad to the  correct sign for E21,,,i,,o. 
For  example, let  al, as computed  from (5-32), be 0.5, 
whence a~/2 _- 0-7. If  ]E2h,2k,0] ---- 1-4, then  in order for 
the r ight  side of (5.33) to give the  wrong sign for E2h,2k, o 
it  mus t  deviate  in one direction from E2h,2k,0 by  a t  
least two s tandard  deviations.  Since the  probabi l i ty  
of this occurrence is only about  1/43, the  r ight  side of 
(5.33) will give the  correct sign for E2h,2k,0 about  42 
t imes out of 43. Even  if [E2h,2k,0] = 0"7, (5"33) will give 
the correct sign about  5 t imes out  of 6, while if 
IE2h,2k,01 = 2"1, (5"33) will give the correct sign about  
769 t imes out of 770. Of course (5.33) becomes more 
reliable as al approaches zero. I t  m a y  be noted  t h a t  
al  is a rough measure of the  dissimilar i ty of the  
a toms present,  the  larger values of a~ belonging to 
those s t ructures  with grossly unlil~e a toms (e.g. the  
presence of a small number  of relat ively heavy  a toms 
together  with a much larger number  of l ighter atoms).  
I n  part icular ,  if all the  a toms are identical  then  
al = 0, and (5.33) becomes an exact  equal i ty  for all 
E2h,2k,0" 

I t  has been assumed in this discussion t h a t  the  r ight  
side of (5.33) can be found exactly.  This would be 

43* 
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Table 1. The phases which are intensity invariants, related probability distributions, expected values, and variances 
for space group/)222 

The phases which head the columns are those phases, q~h~l, for which values are to be determined 

P(E, IE~t) 

E ~pg~ cpgog rpogg q~goo cpogo ~poog 

S~$4 1 h i= ½h, k]= ½k h~ = ½h, li= ½1 ki= ½k, 1i= ½l hi= ½h: hi= ½k li---- ½l Variance o'~ S~ 

Variance q 

P(E, lEVI) = 2lEVI exp I/( 2~)[-½E2- [E~I~] { 

= ~ <I~l ~-- 1 > 

S3 } 
1-4-~2/2 E ([Ei[ 2 -- 1) 

~ j # o  ~ # o  h i # 0  

$3 ~ } P(E, [Ejl) = exp [--½E~--½E~]zE 1-4-½..S--~E(Ei--1) 

Sa 

s] 2 
o" ---- S-~a" 

l j=o k~=o ~ = o  

P (E, lEvi)=- exp [--½Eg--½E§] { 1 ~  -l-~22 • S-- ~ E(E~--1) 

E= g~" S~ 
S~ 

a=½"~a2"2 

k~=o zj=o hi=0 
or or or 

~j=0 hi=0 kj=0 

true only in the case tha t  the infinite number of data  
were known. In  practice the average on the right side 
of (5.33) must  be computed from a finite sample chosen 
(not even at  random) from an infinite population. 
To obtain a rough estimate of the reliability of the 
mean so computed we first find the expected value of 
(]E~19-1) ~ from (5.12). We get 

I °°(x2_l)  2 (2z~)iP(E 1, x) 
0 exp (-½E~) dx = 1.  (5.34) 

From (5.34) and (5.14) we find the variance of 
([E~J2-1) to be 

1, 
since 2 3 2 ($3/$2)E1 is small compared to unity. We con- 
clude tha t  if n terms contribute to the mean in (5.33) 
then the right side of (5.33) is normally distributed 
about its true value (as computed from the infinite 
population) with the variance a'  given approximately 
by 

(r S~ 1 
a'  = . . . . .  (5.36) 

n ~ n 

If we combine (5.32) and (5.36) it is possible to 

estimate, in any given case, the probabili ty tha t  (5.33) 
give the right sign for Eeh,2k,0 by taking into account 
the values of a, a 1, [E2h,2k,01, and the right side of 
(5.33). In  this way the proportion of signs correctly 
determined by (5.33) can be estimated and levels of 
rejection, which must be exceeded by the right side of 
(5.33) before a Sign is considered to be decisively 
determined, can be specified. I t  should be noted tha t  
in the case tha t  not all atoms are identical the non- 
zero value of al, as given by (5.32), implies tha t  a 
certain percentage of signs will be incorrectly deter- 
mined by (5.33) even if an infinite number of da ta  is 
available. 

The ease~ that l~ = 0 and one of hi, kl in zero are 
t reated in a similar way. The results are summarized 
in Table 1 in which h and k replace 2h and 2k respec- 
t ively and hi replaces h~. The notation ~ggo means 
tha t  h and k are both even (but not zero and not 
necessarily equal) while 1 = 0. 

5.1-2. The relation h 1 = h~+h3 . - -We consider in 
detail only the case 

h~# 0, k i 4  0, li 4 0, i = 1, 2, 3; (5-37) 

and find, as in the previous analysis (5.03)-(5.12), 
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P(IEx[, [EzI, IEa[, qh, q~+, q~a) 

= (IEzl. levi. IEaI/~ a) exp (-IE~I+-IE~I+-IEal ~.) 

x {1 +2(,%/~/~)1Ell. lEvi. lEvi c o s : ( ~ i - ~ , - ~ D } .  (5.38) 

For fixed E 1 we find the expected value of 

[EzEal p cos (~+~0a), 

where p is any  number, from (5.38) as follows: 

(IE~Eal ~' cos ( ~  + ~a)) 

Igzl=0 IEal=0 ~ = 0  Jq~=i ~ -~Xp ~-- 

x P(IE~[, IE,J, ]E~[, ~x, ~ ,  ~)dIE~]d[Ea[d~,dcfa (5.39) 

x cos ~1 cos~ (9,+~0a)d[EeId]Eald~dga (5.40) 

= (IE~Eal ~+x) (S~IS~/~) IE~I cos ~1. (5.41) 
H e n c e  

S~/~ ([E~EaIP cos (q~.+q~a)) 
cos ~z Sa [ E z [  ([E~Ea[~+~) (5"42) 

In  a similar manner we find 

S~/" ([E~Eal p sin ( ~ + ~ a ) }  
sin 9~ SaIE~I ([E~Eaf+I) (5.43) 

Replace E z by E, E ,  by Ei, E a by Ei and write 

E~Ei = E@ ~ i+g i  = qoi~. (5.44) 

Then (5.42) and (5.43) suggest tha t  we consider the 
validi ty of the following equations: 

sa/~ .~. IEi/~ cos q~i~ 

cos ~ ~ SaIEI 2 :  iE~il~+x , (5.45) 
i,i 

~az/~ .~. [Eiil p sin ~ii 

sin ~ ~ S~IE[ 2:  IEi~l ~+1 ' (5.46) 
i, ,] 

I E~il p sin (Pii 
~'~ , (5.47) tan  
2: [E~iI p cos ~ii 
i,i 

where the sums in (5.45)-(5.47) are taken over all 
i, j such tha t  

h = h i + h i ,  (5.48) 

hkl 4= O, hikili 4= O, hik~l~ 4: O . (5.49) 

We t reat  in detail only the case p = 1 and, since 
(IEi/~) ~ 1 (Hauptman & Karle, 1955), consider 
therefore the distribution of ~h, where 

~h = IEI cos ~--(S~/e/&) <lEi /cos  ~ij)i,j 

+ i(IEI sin ~-(S~/~/&) <IE, I sin ~ij)~,~), (5.50) 

as h, k, and 1 range uniformly and independently over 
the integers and the supplementary conditions (5.48) 
and (5.49) are fulfilled. (No confusion should arise over 
the use of the symbol i both as the imaginary unit  and 
as an index of summation.) 

In  view of (5.01) and (5.02), 

E h  i = Fhi  -- X h i ' + i Y h i  (5"51) 

fi~ j, 

4 / 2v/4 
Eui = S--~ 2 li~=lZi, cos 2z~hixj, cos 2z~kiy i, cos 27diz i, 

- i  2:  Zj, sin 2~hcvj, sin 2~kd/j,.sin 2~liz j, , (5.52) 
i '=1 

_,v/4 
16 2:  Zj, Zi," (cos 2zthix i, cos 2zchixj,, EhiEh i  = $9. i', i" 

1 
× cos 2z~kiyi, cos 2zekiyi,, cos 2zdizi, cos 2zdizi, 

- sin 2zchix i, sin 2zehixi,, sin 2z~kiy i, sin 2~kiyi,, 

× sin 2zdiz i, sin 2zdizi,, ) 
~V/4 

-- i 2:  Zi,Zi,, (cos 27ehix i, sin 27~hix i, 
1 

× cos 2z~kiyi, sin 2z~kiyi,, cos 2zdiz i, sin 2glizi,, 
+ sin 2z~hix i, cos 2z~hixi,, sin 2zkiyi, cos 2zdciyi,, 

2xdiz i, cos 2xdizi,,)l , (5.53) X sin 

16 ~ ~/4 
IEi; (cos v,j+  sin = (cos 2 hi j, cos 

x cos 2x~kiyi, cos 2z~kiy1, cos 2xdizi, cos 2zdi zy 

- s i n  2x~hix ~, sin 2z~hixi, sin 2x~kiy i, sin 2x~k~y1, 
× sin 2zdiz~, sin 2~l~zi,) 
~/4 

- i 2:  Z~, (cos 2nhix  i, sin 2z~hix i, 
1'=1 

× cos 2z~kiy i, sin 2z~kiy i, cos 2xdizy sin 2zdiz ~, 

+ sin 2z~hix i, cos 2z~hix ~, sin 2ztkiyi, cos 2z~kiy i, 

× sin 2zd#i, cos 2zdizi,)l + R ,  
x 

(5.54) 

where R is obtained from (5.53) by replacing 

27 by 2:  . 
i',i" i'~i" 

We conclude tha t  

provided tha t  
(R)~+~, = o ,  (5.55) 

(xj,, yj,, z j , ) .  + (x  r ,  yj,,, zr) if j , .  j , , .  (5.56) 



8 ~  A T H E O R Y  O F  P H A S E  D E T E R M I N A T I O N  

e,l B- B- 

,-c:l 

• ~. ~ ~ ~ .~ '~.  ~. 
0 

~. ..~ 

.t-.~ 

" ~  0 . o  ~ .  

~ ~ .~  II 
"~ ~ 

I I 
e,,l 

I H 

e,l 

G',l 

G",l 

" I I 

I I I I 

II II 

II 

II 

8 

8 

+ 8 
II 

II 

+ 8 
II 

- 8 

8 

+ 8 
II II 

I ~ :~ 

I I I I 

v v ~. 

I I I 

I I 

II 

II 

II 

v 

,--~ O 

H 

11 

II II II 

II o 

II ~ II 

:---~ ~ 

~ o  ~ ~+ _~ ,  I~o ~ + 

- -  - -  ~1  A A 

-~ ~ ~, m ~ ~ ~ _?_ m ~ :~ :~ 

v 

T i t "T ~ .~  T ~- ~+ m;" ~ + 

I " ~  ~ v 

-=-- ~ 11 



g. K A R L E  AND H.  H A U P T M A N  643 

Hence, from (5.54), 

<lEi~l (cos ~ j + i  s i n  ~)i])>hi+h ~ 

4 t _,Vla 
- I z y ,  cos cos 

x cos 2~(li+li)z~, 
2via 

- i ~ Z~., sin 2~(hi+hi )x  ~, sin 27r( k i+ki )y  i, 
~'=1 

sin 2~(l i+l l )zz[  . (5.57) X 

However 

Ehi+h/ = E h  = [Eh[ (cos ~ + i  sin ~) 

4 ~/a 
= ,z/,. (oo  2 ky,. 

- i  sin 2z~hxj, sin 2 u k y  z sin 2zlz j , ) .  (5.58) 

From (5.50), (5.57), and (5.58), 

.,v/a/Zj, ,S'~ '~ 
i/ '=l \b '~  S 3 

/ 

× (cos 2~hx  i, cos 2zky  i, cos 2~lz f  

- i  sin 2ghxj, sin 2xekyy sin 2~lzi, ) . (5.59) 

Now, just as in t h e  derivation 6f (5.32), we conclude 
that ,  as h, k, 1 range uniformly and independently 
over all the integers, both the real par t  and the 
imaginary part  of (Sh are normally distributed about 
zero with a variance given by (5.32). In short we may  
write 

cos ~ ~ ~ <lEi~l cos ~u>i,i, (5-60) 

~3/2 (5"6]) 
sin ~ ~ ~ <lEi/I sin cf#>i,i, 

<lEijl sin ~u>i,~ (5.62) 
tan  ~0 ~ (IEi~l cos ~o,>i,~ ' 

where the symbol ~ denotes probable equality. More 
precisely, cos q and sin q are normally distributed 
about the means (5.60) and (5.61) respectively with 
the variance al given by 

1 [S~Sa 1) " (5.63) 

The variance a arising from the use of a finite num- 
ber n of data  to compute a mean is calculated as in 
§ 5.1.1. The various cases which arise when (5.49) is 
not  fulfilled are t reated in a similar manner and the 
results are summarized in Table 2. I t  should be noted 
tha t  in order to conserve space, the cases corresponding 
to the various cyclic permutations on the indices 
permit ted by the space-group symmetries have not 
been included in Table 2; but  these may be easily 
deduced from the existing entries. 

5.1.3. Miscellaneous re la t ions . - -Some of the higher- 
order terms in the Maclaurin expansion of the ex- 
ponential in (5.05) lead ul t imately to useful relations. 
We list only five of the most useful sdch distributions: 

P(E ,  Ei, IEjl) = IEj__~[ exp ( - -½E2--½E2--1Ej l  2) 
7~ 

Sa )} (5.64) × { I + t ~ E E d l E j I ~ - I  , 
where 

{ h =  h i+2hj, k =  k i+ 2k i ,  

/ = / i =  0, t =  ½ if l j = O ,  t =  1 if / j # 0 ;  

or where 

(.5.65) 

(5-66) 

h = hi+2hj, k i = O, k = 2ki , (5.67) 

l = / i = O ,  t=½~/2 if / i=0 ,  t =  V2 if l j # 0 .  (5.68) 

P ( E ,  Ei, Ei) = exp ( - ½ E 2 - ½ E 2 - ½ E  2) 

1 Sa 2 × +t~-~EEi(Ej-1)j_, , (5.69) 

where 
h = hi+2h], k = ki = l = li = O, t =  1; (5.70) 

or where 

h = 2 h # k  i = 2 k # l = l i , k = h i = l j = 0 , t =  1; (5.71) 

or where 

h = h i + 2 h  i, k=ki+2ki ,  l=l i=l i=O, t=½.  (5.72) 

5"1"4. A procedure for  phase de termina t ion . - -We 
star t  with a set of observed structure-factor magni- 
tudes containing all the usual corrections except those 
for vibrational motion and absolute scale. Define 

N 
as = a~(s) = a~(h, k,  l) = .2" f~(h ,  k, l ) ,  

j=l  
where s = sin 0/~.. Also define 

(5-73) 

= e(s) = e(h, k, l) = 2 if h = k = 0  or | 
if k =  1 = 0 or / '  (5.74) 

if l = h = O  

e = e(s) -- e(h, k, l) = 1 otherwise, (5.75) 

since, in view of (5.01) and (5.02), these are the values 
of (m°+m~)/n  appearing in (3.12). Arrange the s values 
in increasing order and divide the s range into intervals 
in such a way tha t  each interval contains approxima- 

[F[obs" values. For each such interval compute tely 200 2 

K = _~v, ea2/.~,JF]2obs. , (5.76) 

where the sums are extended over the corresponding s 
(or h, k, l) values appearing in the interval. Label 
each interval by the 8 value at its center so tha t  K 
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appears as a function of s. Draw a smooth monoto- 
nically increasing curve K(s)  among these points. 
Finally,  by  means of 

IF~I2 = IFlo~.K(s) (5.77) 

we obtain the values of the  [F~[  ~ corrected for 
vibrat ional  mot ion and placed on an absolute scale 
which are needed to compute the ]Ea~.l ~'. 

In  view of (3-12), the  normalized s t ructure-factor  
magni tudes  IEa~] 2 are computed by  means of 

IEa~12 = I F ~ I 2 / ~ .  (5.78) 

At  this point  it is well to verify the following aver- 
ages which are easily obtained from the  distr ibutions 
for ]E[ given by  us (Haup tman  & Karle,  1953; Karle 
& Haup tman ,  1953) : 

<[El>=0"798' <]EI2>=l '000'  <IE[3>=1"596 / 
<IEI~>=3.000 ' <[IEI~ 1]>=0.968, ', hkl=O; 

(5.79) 

<1EI>=0"886' <lEl~>=l '000 '  <]E[a>=l '329 / 
<jEll>=2.000 ' < l e i2_1 i>=0 .736  ' ' ,  h k l#O .  

(5.8o) 

The averages given in (5.79) and (5.80) are sufficiently 
accurate  for large N. The more accurate  formulas 
needed when N is small (e.g. < 10) are readily ob- 
ta ined from the distr ibutions cited above. 

Next ,  three summa ry  tables are constructed. In  the 
first table the entries, for each fixed ki and 1 i, are 

~7 ( I E ~ I  ~ -  1) .  (5.81) 

In  the second table the entries, for each fixed 11 and hi, 
a r e  

~Y ( I E ~ j l  ~ -  1) .  (5.82) 

In  the th i rd  table the entries, for each fixed h~. and ki, 
a r e  

(IE~:~I ~ -  1) .  (5-83) 

Step 1 . - -Ten ta t ive  phases qa~ (either 0 or g) for 
the normalized s t ructure  factors E~:  are first ob- 
ta ined for h, k, and 1 all even and hkl = 0. These 
phases are the in tensi ty  invariants ,  i.e. their  values 
are uniquely  determined by  the magni tudes  of the 
s t ructure  factors. For  example, in view of Table 1, 
the tentative phase of ~0 ,  where h and k are both 
even and hk :# 0, is either 0 or g depending on whether  
(5.83), with h i = ½h, k] = ½k, is positive or negative.  
In  view of Table 1, to determine a phase ~a00, where 
h is even, we add (5.83) with h i = ½h, ki = 0 to (5.82) 
with hi = ½h, 1 = 0, and, according as this sum is 
positive or negative, the  value of ~a00 is 0 or g. I t  is 
thus  seen t h a t  t en ta t ive  values for the phases which 
are in tens i ty  invar iants  are immedia te ly  obtainable 
by  inspection of the three summary  tables. Of course 
only those phases qa~ will be rel iably determined for 

which the corresponding IE~I is large and the  cor- 
responding en t ry  in the summary  table is large, as 
measured by the variances a and ~ (Table 1). The 
exact  number  of phases so determined will depend of 
course on the amount  of da ta  available relat ive to the  
complexi ty of the crystal  s tructure.  

M a k i n g  use of the phases t en ta t ive ly  determined,  
we use columns 7-10, 13 of Table 2 and find final 
values for the phases qh by  means of 

z 1 S~/2 ~, J ~ j  IE~jl cos ~ j  

cos (~h = ~qalEh t • Z ]EijI~ , (5-84) 

h = h i+h i ,  E i j =  EhiEhi, ~i1 = ~hi+~hj • (5-85) 

Equa t ion  (5-84) is implied by  (5.45). The contribu- 
t ion of each term, however, is weighted by  means of 
the reciprocal of its s tandard  deviat ion obtained from 
Table 2. 

We assign to ~h the value 0 or g according as the 
r ight  side of (5.84) is positive or negative. In  con- 
junct ion with (5.84) use may  be made of (5.64)-(5.72), 
especially if the  number  of phases assigned t en ta t ive ly  
is so small t ha t  (5.84) is not  s tat is t ical ly reliable. We 
conclude tha t  q~ is probably  0 or ~ according as 

1 
~ ~ Ehi(lEh~ [ 9_ 1) (5.86) 

is positive or negative, where x = 1/t if (5.64) is used 
while x = 2/t if (5.69) is used. Occasionally discrep- 
ancies between (5.84) and (5.86) will be observed. 
These are to be resolved in an obvious manner  de- 
pending on the relat ive stat ist ical  weights of (5.84) 
and (5.86). 

Step 2 . - -Next ,  the  largest ]Ehl[, with hlkl l  1 = 0 
and for which ~hl is l inearly independent ,  is selected. 
The value, either 0 or g, of the  phase t h l  m a y  be 
specified arbi trari ly.  Then the values of all remaining 
phases ~h, which are l inearly dependent  on 9~hl and 
for which hkl = O, are uniquely  d e t e r m i n e d  by  the  
magni tudes  of the s t ructure  factors. To find these use 
is made of (5.84)-(5.86), in the manner  described in 
Step 1, together  with the phases a l ready determined.  

For  example, the  phase ~h~ m a y  be chosen to be 
a phase ~ 0 ,  i.e. h 1 is odd (ungerade), k 1 is even (gerade), 
and 11 --0. Then the values of all other phases ~ 0  
and ~uug are uniquely determined.  

Step 3 . - -The  largest ]Eh~[, with hJc21~ = 0, for which 
~h~ is l inearly independent  of ~h~ is next  selected. 
We then  proceed as in Step 2 but  replace h~ by  hg. 
Now however, in addi t ion to the phases ~0h, with  
hkl = 0, which are l inearly dependent  on ~h~, those 
phases which are l inearly dependent  on the  pair  
~hl, ~h~ are also uniquely determined.  Again, use is 
made of (5.84) and all phases the values of which have  
been previously determined.  
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For example, if ~0~1 is chosen to be q0ue0, then the 
phase q%~ may be chosen to be ~0o~. Then the values 
of all phases ~o~ and q%uo, lirmarly dependent on q%v 
as well as those of all phases ~0~o, linearly dependent 
on the pair ~ ,  ~0~, are uniquely determined. 

Step 4 . ~ T h e  largest lEgal, with hakal a = 0, for which 
~.~ is linearly independent of the pair ~ ,  q%z is 
selected. We then proceed as in Step 2 but  replace 
h~ by h a. In  addition to the phases ~n, with hkl = O, 
which are linearly dependent on ~ ,  those which are 
linearly dependent on the pair ~%~, ~.~ or on the pair 
~ ,  qgna are also uniquely determined. The values of 
all phases which have been previously determined are 
used in conjunction with (5.84). 

For example, if ~%~ = ~u~0 and ~n~ = q0o~, then 
~ a  may be chosen to be ~0~0u. Then the values of all 
phases ~0g0u and q00~, linearly dependent on q%~, as 
well as those of all phases T~0u, linearly dependent on 
the pair ~on~, ~na, and those of all phases ~o~u, linearly 
dependent on the pair ~ ,  ~ ,  are uniquely deter- 
mined. 

Step 5 .~Making  use of the phases already deter- 
mined and columns 5 and 6 of Table 2 we find tenta- 
tive values for the magnitudes of all phases ~ which 
are structure invariants (i.e. h, k, and 1 are all even) 
by means of (5.84) and (5.85). Improved values for the 
magnitudes of these phases are obtained from columns 
2-6 of Table 2 by using (5.84) and (5.85) until several 
cycles of refinement yield no further changes in these 
values. 

Step 6 . ~ W e  specify arbitrari ly the sign of a phase 
~ which is a structure invariant  (whence its magnitude 
is known from Step 5). The corresponding [E~[ should 
be large while the value of [~ l  should be close to ½~. 
In  this way we distinguish between the two enantio- 
morpheus structures S and S' permitted by  the known 
magnitudes of the structure factors. Final values for 
the phases which are structure invariants are obtained 
by repeated use of (5.84), (5-85), 

1 
~S ~ lEi][ sin q~i] 

S~  12 . i,¢ 

iE~il~ " , ( 5 . 8 7 )  s i n  (~h = 5'~lEhl .X . ,~ . .  

i, j .~aij " s i i  

and 
tan  (D, = sin q~h/eos (D,. ( 5 . 8 8 )  

Equation (5-87) is implied by (5.46). The contribu- 
tion of each term, however, is weighted by means of 
the reciprocal of its standard deviation obtained from 
Table 2. Although the values of cos qu and sin q~, as 
obtained from (5.84) and (5.87), may be inaccurate 
(and even exceed unity) owing to inadequate or faulty 
sampling, these errors tend to compensate in (5.88). 
Hence, (5-88) should be used to compute q0~ whenever 
possible, instead of (5.84) and (5.87) separately. 

Step 7 . - -The  values of all remaining phases q~ are 
obtained by repeated use of (5.84), (5.85), (5.87), and 
(5-88), as many iterations being used as necessary. 

Table 3. The relation 
xc, ~s and x~ for 

hkl of  R e f e r -  
~hkl once  

d e s i r e d  hikili 

hkl hikili 
hk[ hikiO 
hkl hiO0 

hkl hik~O 

hkl hikiO 

h~t 0 ~  

hkl hiO0 

hkl OkiO 

h~t oot~ 

h~O h&~O 

o~t ok& 

hOt h~Ot~ 

h~O h~Ot~ 

hO1 hikiO 

Okl hikiO 

hkO hikiO 

okt okd~ 

hOl hiOli 

h~O h~O0 
hO0 h~O0 

hkO hikil~ 

Okl hikil~ 

hO~ h ~  

hO0 h&d~ 

hkO h&& 

Okl hikili 

hOt h~h~ 

hoe h~d~ 

h = h~+hj and the values 
space group P212121 

Refe r -  
ence  Condi -  
hikil j t i o n  •ci} gsi; gai] 

hjk]l] N o n e  1 1 ½ 

hjkjlj N o n e  1 1 ½ 

hikil j N o n e  1IV2 111/2 ½ 

] hilj e v e n  ½ oo 1 hiO1 j hili o d d  oo ½ 1 

] hik/even ½ 0o 1 
Okil i [ h/ki o d d  ~ ½ 1 

S kili e v e n  ½ c~ 1 
hiOl i [ kil; o d d  c~ ½ 1 

k) e v e n  1[21/2 0o 1 
Okjl i k i o d d  c~ 112 /2  1 

1 i e v e n  1/21/2 0o 1 hiOli 1 i o d d  co  1/2l/2 1 

h i e v e n  1/21/2 oo 1 hikiO i hj o d d  ~ 112/2  1 

f h/h i e v e n  1 oo 1 hjkj0 
h/h i o d d  oo 1 1 

f kik i e v e n  1 eo 1 Ok, jlj kik i o d d  oo 1 1 

f lil 1 e v e n  1 0o 1 hiO1 ~ Iili o d d  ~ 1 1 

f lik i e v e n  ½ . ¢x~ 1 Okjlj likj o d d  oo ½ 1 

] hik i e v e n  ½ oo 1 
Okil i hikj o d d  oo ½ 1 

hilj e v e n  ½ oo 1 
hiO1 i h/1 i o d d  oo ½ 1 

hi e v e n  1]]/2 0o 1 
hiO0 hi o d d  00 1/1/2 1 

lci e v e n  111/2 ¢~ 1 OkiO ki o d d  c¢ 1 / 1/2 1 

li e v e n  1]I/2 ¢x~ 1 
hi00 li o d d  oo 111/2 1 

OkiO N o n e  ½ oo 1 

hi00 N o n e  1 ] 1/2 ~ 1 

h e v e n  1 o0 ½ 
hikjli I h o d d  co  1 ½ 

~" k e v e n  1 oo ½ hikjlj k o d d  0o 1 ½ 

1 e v e n  1 oo ½ 
hikili I 1 o d d  oo 1 ½ 

hjk~lj N o n e  1 [ 1/2 c~ ½ 

f h e v e n  1 oo ½ 
hiO1 i I h o d d  co  1 ½ 

f k e v e n  1 oo ½ 
hiO1 i k o d d  co  1 ½ 

[ l e v e n  1 oo ½ hjk)O 1 o d d  c~ 1 ½ 

Okjl i N o n e  1 [ I/2 oo ½ 

5-2. Space group P212121 
Since the formulas for this space group are similar 

to those for P222, it will suffice only to sketch briefly 
the procedures for space group P212121, pointing out 
in particular where these differ from those for P222. 

5.2.1. Procedure for phase determination.--The nor- 
malized structure:factor magnitudes are computed as 
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in § 5.1.4 with the exception tha t  now the  extinctions,  
i.e. those reflections Ehk z with h = k -- 0, l odd, or 
k - - 1  = 0 ,  h odd, or 1 - - h  - -0 ,  k odd, are omit ted  
from consideration. 

Next,  three s u m m a r y  tables are constructed. I n  the  
first  table  the entries, for each fixed k~ and  l# are 

~v ( _  1)h;+kY(IEhyk]~j]2-- 1) .  (5"89) 
hy 

In  the second table  the entries, for each f ixed lj and  
hi, are 

(-- 1)kJ+ZJ(IEhjk]zjl 9 -  1 ) .  (5"90) 
kj 

I n  the th i rd  table the entries, for each fixed hj and ki, 
are 

( -  1)~J+h]( [E~kj~jl 2-- 1) .  (5.91) 

In  the procedure to be described we na tu ra l ly  make  
use of these new s u m m a r y  tables ra ther  t h a n  the ones 
outl ined in § 5.14 which were appropriate  for the  space 
group P222. 

Step 1 . - -Tenta t ive  values, ei ther 0 or g, for the  
phases ~hkl which are in tens i ty  invar iants ,  i.e. such 
tha t  h- -  It-- 1-~ 0 (mod 2) and hkl = O, are obtained 
as in Step 1 of § 5.14 except t ha t  we now use the new 
s u m m a r y  tables with the entries (5.89)-(5.91). F ina l  
values for these phases are obta ined as before making  
use of (5.84)-(5.86) but  with values of u~, us and u~ 
as obtained from Table 3. However,  the separate 
terms of (5.86) are now mult ip l ied  by  (-1)~/+ki or 
(-1)~+~i or (-1)l~+hi according as h i is of the form 
Ogg, gOg, or ggO respectively.  In  this  way  (5-86) is 
replaced by a new expression hereafter  referred to as 
(5.86'). 

Step 2 . - -Next ,  the largest IEh~[, wi th  hlkl l  1 - - 0  
and for which q%~ is l inear ly  independent ,  is selected. 
The value of the  phase ~hl, of necessity chosen from 
one of the pairs 0, z~ or +½~ depending on the na ture  of 
hi ,  m a y  be specified arbi trar i ly;  Then the  values of all 
remaining phases ~ ,  which are l inear ly  dependent  on 
~hl and for which h = 0 or k -- 0 or 1 = 0 depending 
on whether  h 1 = 0 or k 1 -- 0 or 11 = 0, are un ique ly  
determined by  the  magni tudes  of the structure factors. 
To f ind these, use is made  of (5.84) or (5-87), (5-85), 
and  (5.86') in  the manne r  described in Step 1, to- 
gether with the phases a l ready determined.  I t  should 
be emphasized at  this  point  that ,  cont rary  to the  
s i tuat ion for space group P222, i t  is not  sufficient t ha t  
~h merely be l inearly dependent  on ~0h~. I t  is fur ther  
required of ~h tha t  a certain one of its indices be zero. 
This is not  a contradict ion of Theorem 8.02-2 of Haupt -  
m a n  & Kar le  (1956) since Hypothes is  B of this  theorem 
is not fulfilled. I n  fact  we have  not  yet  dist inguished 
between the  enant iomorphous structures S and  S '  
permi t ted  by  the structure-factor magnitudes.  For  
space group P222 this  does not  ma t t e r  since a phase 
~h with hkl = 0 has the same value for both enantio- 
morphs.  For  P212!21, on the other hand,  the  value of 
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such a phase may  depend on the choice of enantio- 
morph, S or S' .  

For example, the phase ~nl may be chosen to be 
a phase ~0~ whence its value is chosen arbitrarily to 
be one of +½z. Then the values of all other phases 
~0~ are uniquely determined. 

Step 3. The largest [Eh2[, with h~lc~l~ = 0, for 
which ~ 2  is linearly independent of 9~n~, is next 
selected. We then continue as in Step 2 but  replace 
h~ by h2. We need to proceed now with utmost caution. 
Are all phases ~n, with one index 0, which are linearly 
dependent on the pair ~h~, ~h~ uniquely determined 
by the structure-factor magnitudes, as was the case 
with P222 ? The answer is 'yes' if the structure in- 
variant  ~h--~h~--~h~ is an intensity invariant, i.e. 
has the value 0 or ~, for the value of such an invariant 
is the same for both enantiomorphous structures S, S' .  
The answer is 'no' if the value of this invariant  is 
~-½r~, for such an invariant has the value ÷½7~ for S 
and the value -½x~ for S'. In the latter case we are 
free to choose arbitrarily one of the two possible 
values of ~h (i.e. of ~h - -~ - -~h~) ,  and in fact must do 
so if we are to distinguish the two structures S, S'. 

Let us assume tha t  it is the former case which ap- 
plies, and postpone for a while the choice of enantio- 
morphous structure S, S'. To this end, take ~ = ~0uu, 
~h~ = CfuuO. Then the values of all phases ~0~ and 
~ 0  are uniquely determined. To find these, use is 
natural ly made of (5.87) in the manner already de- 
scribed. 

I t  is interesting and easy to verify that,  in the case 
tha t  the invariant  ~h--~h~--~h~ = ~:½g, (5"84) ac- 
tually does yield no information concerning the value 
of ~ .  This is an instance in which the joint distribu- 
tion bears out in a rather striking fashion the results 
of the invariant  theory. 

Step 4 . ~ T h e  largest [Ehz[, with halc~la = 0, for which 
~ha is linearly independent of the pair ~ ,  Cn~ is 
selected. We then proceed as in Step 2 but  replace 
h~ by h a. The remarks of Step 3 are relevant here too. 

For example, let us take q)h~ = q%uu, q)h2 = q~uO, 
~ha = ~0u~. Not only are the values of all phases 
~0~, ~ 0 ,  ~0ua which are linearly dependent on 
~hl, 7~ ,  ~na respectively, uniquely determined by the 
magnitudes of the structure factors, but  so are the 
values of all phases ~0~ and ~0a, linearly dependent 
on the pairs ~hl, ~na and ~n~, ~ 3  respectively. This is 
a consequence of the fact tha t  the value of each of the 
structure invariants ~ 0 ~ -  ~h~-- ~h~ and ~ 0 g -  ~h~-- ~h~ 
is 0 or g, hence the same for the two enantiomorphous 
structures S, S'. The phases q=0~, which are linearly 
dependent on the pair qnl, qh~ are, on the other hand, 
not uniquely determined by the magnitudes of the 
structures factors since the values of the structure 
i n v a r i a n t s  (Pu0u--~Phl--(ph2 are ~:½zr, hence different for 
the two enantiomorphous structures S, S ' .  The phases 
¢~u0 also are not uniquely determined by the structure- 
factor magnitudes despite the fact tha t  these phases 
are linearly dependent on ~ha. Again the reason is the 

fact tha t  the values of the structure invariants ~0-90h~ 
are ±½z. 

Step 5 . - -Any phase ~h4, with h4lQ1 a = O, is of neces- 
sity linearly dependent on the triple ~hl, ¢h2, ~ha aI- 
ready chosen. For example, taking, as in Step 4, 
~0h I = ~POuu, ~)hg. = g])uuO, ~0h 3 = (P0ug w e  may take ~h4 = 

~g~0, where [Eh4[ is maximal. Since the value of the 
structure invariant 9~h4--~h3 is :L½g, we may choose 
either one of these values, i.e. either of the values 0 
or ~ for ~h~, and thus, finally, distinguish between the 
two enantiomorphous structures S, S'. Now the phases 
~g0u and ~ugo linearly dependent  on the pairs ~hl, ~ 4  
and ~h2, ~h4 respectively, are uniquely determined. 
Finally the phases ~u0~ linearly dependent on the set 
~hl, ~h2, ~h3, ~h4 are also uniquely determined. These 
phases are all to be found by means of (5.84) and 
(5.87) in conjunction with the values of all previously 
determined phases. 

Step 6.--All remaining phases are obtained as in 
Step 7, § 5.1.4, by repeated use of (5.84), (5.85), (5-87), 
and (5.88), referring to Table 3 for values of u¢, g~ 
and ~a. 

I t  should be pointed out that,  from the point of 
view of phase determination, space group P212121 is 
more favorable than P222. In order to determine the 
value of the structure invariant  ~hkz with hIcl =4= O, 
both (5"84) and (5.87) are available to yield indepen- 
dent estimates of cos ~hkZ and sin ~a~ for space group 
P2~2~2~. For /)222, however, only (5-84) is available 
in the initial stages, and (5.87) may  be used only 
after the values of a sufficient number of phases 
have been determined. 

6. T y p e  2P22 

Only the space group P422 belonging to Type 2P22 
is here considered in any detail. Since the methods 
are similar to those described in § 5, only a brief 
sketch of the procedures used will suffice. The re- 
maining space groups belonging to this type are 
easily treated in a similar way. 

6.1. Space group P422 

We choose one of the two possible functional forms 
for the structure factor as follows: 

$h=4  COS 2~lz [COS 2rehx cos 2~ky+cos  2rekx cos 2ghy], 

(6.01) 
~]h = - 4  sin 2~Iz [sin 2 ~ h x  sin 2 ~ k y - s i n  2~kx sin 2~hy] .  

(6.02) 

6.1.1. The intensi ty  seminvar iants . - -S ince  the values 
of the intensity seminvariants (those structure semin- 
variants whose values, as a consequence of the space- 
group symmetry,  are either 0 or ~r) are uniquely 
determined, for each fixed functional form for the 
structure factor, by the magnitudes of the structure 
factors, we first seek formulas involving these phases. 
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81El11E+.[ lea[ exp [--IEI[ ~- lEa.i+.--[Ea[+. ] 
× { l + t ~  IEiIIE+.IIEal eos (~l+~u+~a)} hi-F h+.-F ha=O, kl-A-k~. + ka=O, lx-F l+. + la=O 

41.~.1 levi e ~  [-- ½1Ell ~ -  IE+.r--levi+.] 
]/(2~) 

× { l + t ~  IEIIIE~.IIEs[ cos (qh+q+.+~a)} 

h i =  4-k l, hi q- h~ .-F ha = O , kl  -F k+. -F ka = O , ll -F 4 -F la = O 

hv4-h+. + ha=O, kl-F k~-F ka=O, 4 + 4 = 0 ,  l l = 0  

h i =  + k 1, hl -t- h+.-f- ha = O, bl -F k~-F ka = O, 4-Fla---- 0 , / l = 0  

h~ +h~-4-ha=O, k~-4-ka=O, ll +4-4-1a=O, k l = 0  
h+.-F ha=O, kl--F k+. + ka=O, lx-F l~-F la=O, hi-----0 

h+.--Fha=O, k+.+ka=O, ll -F l+ -F /a = 0, h l = k l = 0  

hvF  h~-4- ha = O, kg-4- ka = O, 12+13=0, k l = / l = 0  
hz-F ha = O, kv4- k~. + ka = O, l~-F la---- O, h ~ = l l = 0  

2 

2 

21/2 

2 
2 

4 

21/2 
21/2 

2[Eal exp [-- ½lEi[+.-- ½1E+.I ~-  IE~I~3 
2~ 

X { ~3 ]EI[IE+.[[~3[ cos ((~i--}- (~2-~- (~3)} 1-~g 23/---- ~ 

h i =  -4-kl, h+= q-k2, hvFh~-Fha=O, kl--k+.+ka=O , ll + 4  +la=O 

h~ = -4- k~., hl -4- h~. + ha = O , kl  .-F k~ .-F ka = O , l+.-F~a= 0, l l = 0  

hi=-+-k~, h+.=-t-k+., h~ + h+.-F ha=O, k~--k+.--F ka=O, /+.-F /a= 0, l~=0 

hi+ha=O,  kl-4-k+.-l-ka=O, l~q-~a=0, l l=h+.=0 

hi=-4-k i, h i+ha=O,  kl-4-k~.+ka=O, 4 +la=O,  l~=h~=0 

h~= q-k+., h~-Fh+..-Fha=O , k+.+ka=0 , ll+l+.-4-la= 0, k l = 0  
h+.=-t-k+., h+.-Fha= 0, kl+k~.+k3=O,/i-4-l+.+/a= 0, h i = 0  

h+. .-F ha = O , k+. -4- ka = O , l l + l a = 0 ,  ha = kl = 4 = O 

h+.= -q-k~., hl-4-hq-Fha=O, k~-Fka=0, 4-+-/a= 0, k l = l ~ = 0  
h+.= q-k~, h+.-Fha=O, k v F  k+.--F ka=O, 4-4-1a=0, h l = l ~ = 0  

hl-Fha=O, k+.-Fka=0, l~.+/a=0, k ~ = l l = h ~ = 0  
h+.+ha=O, kl +ka=O,  l+.+la=O, h~=ll=lc~=O 

2 

2 

21/2 

2 

21/2 

2 
2 

4 

21/2 
21/2 

21/2 
2V2 

exp [-- ½[Ei]2-- ½1Eg.I 2 -  ½lEa1+.] 
(2st)3/2 

X { I + t s ~  [EI,,E+.I,Ea, cos (q~l+q~.+~a)} 

h i =  =t=kl, h~= =t=k~, ha= -4-k a, hl-4-h2-4-h3=O, kl-4-k~-4-kz=O, l l+l~+13=O 1 

h i =  ± k  1, h2= :t: k~., ha= ± k  a, hl+h~.+ha=O, k l + k 2 + k a = 0 ,  4 + / a =  0 , / 1=0  1/2 

h i =  :t:kp ha= ± k  a, h i + h a = 0 ,  k l+k2 - -ka=0 ,  4+/a=0, /1=h2----0 2V2 

ha---- ± k a, hv4-ha----O, k l + k 2 + k a = 0 ,  12-4-1a----O, 11=hg=O 2 

hl+h2-4-ha=O, kl+k+.-l-ka---- 0 1 

hi---- ± k  1, hl +h~.+ha-----O, klWk2A-ka=0 V2 

h i =  "~- ~1' h2 ~-- "~- k2' hl + h2 -4- hs ---- O , kl  -- k~. + ka = O 2 

hi---- ± k p  hg.= ±k+., ha= ±ka,  hl +h2+ha=O,  kl-l-k+.A-ka= 0 1/2 

hg.=-4-k9., ha=-4-k a, hl +h~.+ha=O, ki--kg.+ks=0,  lg .+ /a=0, /1=0 2 

hl-F h+. = 0, k 1-1- k a = 0, l+. -4- la = 0, l I = kg. = h a = 0 2 

hi-----..4-ki, hi +hg=O,  k l + k a = 0 ,  l~-Fla=O, l l=k+ .=ha=0  21/2 

h+=-4-k9., ha=-4-k a, hi +hg.+ha=O, k~. +ka=O,  l l - F 4 + / a = 0 ,  k l = 0  2 
hg= +k+., ha= -4-k a, h+-Fha=O, kl+k+.+ka=O, ll+lg-4-1a=O , h i = 0  2 

hl Thg.+ha=O, ll +l~.+la=O, k l = k g = k a = O  1 
kl-F kg-F k a = O, li.-F l+.-F /a=0, h l = h ~ = h a =  0 1 

h+ = --t- kz, ha=-+-k a, h+. -i- ha = O , k~. + ka = O, ll +12 -F la = O, h i = k 1 = 0  2 

hz= -+- kg., ha= -4-k a, h+.-4-h3=O, k~.+ka=O, ll-Fla=O, h l = k l = 4 = O  21/2 

kg. -4- ka = O, l 1 -F la = O, h i = k 1 = h+. = 12 = h a = 0 21/2 

ll.-F 4 + la = O, hl = kl = h2 = k2 = ha = ka = O 2 

h+= -4-k 2, ha= -4-ka, hl-Fh+.-Fha=O, k~.+ka=O, 4 + l a = 0  1/2 
h+= q-k+., ha= -4-ka, hz-Fha=0, ki + k 2 + k a = O ,  4-Fla=O I/2 

ha= -4-k a, hl--Fha=O, k+.-Fka= 0, l~.A-/a= 0, k i= l l=h+ .=  0 21/2 
ha= -+-k a, h+.-+-ha=O, k l + k a = 0 ,  l+.+/a= 0, hl=l l=k+.=O 21/2 

h i + h a = 0, k+.-F ka = 0, k 1 = 11 = h+. = 4 = la = 0 2 

ha= ±ka,  h l + h a = O  , k+.-F ka=O, k l = l l = h ~ = l q = l a = O  2 

hl -F hg -F ha ---- O , kl  ---- ll = k~ ----- l~ = ka = la = O I/2 

kl+k, .+4=o,  a ~ = 1 ~ = 4 = 4 = 4 = 4 = o  1/2 
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Table  6. T h e  re la t ion  h = h i + h  / and ,  together w i t h  
(5-84) a n d  (5.87), related expec ted  va lues  a n d  var iances  

f o r  space  g r o u p  P422 

hkl of qzhk~ Reference Reference 
desired and hiki l  i and h;k]l/ and 
conditions conditions conditions 

hkl* h/kill hikil i 
hkl ; h =  ± k hikili hik/l ~ 

hkl . hikili ; h i=  ± ki h~k/l/ 
hkl ; h =  ± k hikili ; h i= ± ki hlk~l] 

hkl hikili ; hi---- ~: ki hik~li ; h i= ± k/ 
hkl ; h :  -4- k hikili ; hi---- ± ki h/k]l/ ; h/== ± k] 

hkl hik~O hikil i 
hkl hikiO ; h i=  ± ki h~kil/ 

hkl; h :  -b k b4kiO hiki1 i 
hkl; h = ± k hikiO; h i :  ~ k~ h~k~l i 
hkl ; h :  ± k hikiO hikjl j ; hj = ~ k i 
hkl; h = ± k hikiO; h i= ± ki hikil ~; h) = ± k i 

hkl hiOli 
hkl ; h = ± k hiOli 

hkl hiOli 
hkl ; h = ± k hiOli 

hkl Okili 
hkl ; h = ± k Okili 

hkl Okili 
hkl ; h--~ ± k Okili 

hkl hikiO 
hkl hikiO ; h i :  

hkl ; h = ± k hikiO 
hkl; h =  ± k  hikiO; h i= 

hkl OOli 
hkl ; h = ± k OOli 

hkl OOli 
hkl ; h = ± k OOli 

hkl hiO0 
hkl hiO0 

hkl ; h = ± k hiO0 
hkl ; h :  ± k hiO0 

hkl OkiO 
hkl OkiO 

hkl ; h-= ± k OkiO 
hkl; h = -4- k OkiO 

hk~ h~O0 
hkl ; h =  ± k b400 

hkl OkiO 
hkl ; h = ± k OkiO 

± k i  

~k~ 

~/~/~; ~'~ = ± ~ 

0~j~ 
Ok/l~ 
o ~  
o ~  

h ~  ; h~ = ± ~/ 
h~kiO 

~ / 0 ;  ~ = ± ~ 
h ~  

h~0~ 

* h =~= -V k unless specified. 

½ 1 1 
½ 1 ¢¢ 
½ 1 1 
½ 1 
1 ½ o~ 
1 1 
½ 1 1 
½ 1]l/2 l /V2 
½ 1 c~ 
½ ~lV2 oo 
1 ½ oo 

½ 1 1 

½ 1 o~ 

1 ½ o~ 

1 ½ oo 

½ 1 1 

½ 1 oo 

1 ½ o0 

1 ½ 

1 ½ oo 

1 1/2I/2 ¢x~ 
1 ½ 
1 .1 /2[ /2  "o~ 
½ ½ ½ 

1 ½ c¢ 

1 ¼ o~ 

1 1/2I/2 c~ 

½ ~/V2 ~lV2 

½ ~/V2 
1 l /V2 
½ i/V2 i/V2 
1 1[21/2 oo 

½ ~/V2 
1 ~/V2 
1 1[21/2 oo 
1 1/2~/2 c~ 

1 1/21/2 oo 

The phases which are s t ructure  seminvar iants  are the 
~hk~ where h + k  and 1 are both even. I t  is then  readi ly 
verified tha t  the phases which are in tens i ty  semin- 
var iants  are the qogg, qg0g, qggo, qu~o, ~a~a, and ~a~.* 
(In this  nota t ion  ~0ga, for example,  refers to those 
phases whose first index is zero and whose second and 
th i rd  indices are both even bu t  not  necessarily equal. 

* The phases which are structure invariants are the q~ggg 
while those which are intensity invariants are the q)ogg, ~a0g, 
~ggo, ~/~g, and ~pff/~ where h is even. 

I-Iowever, in qh~ the first two indices are equal  and  
the th i rd  is even.) 

We are thus  led to consider first  normal ized struc- 
ture factors Eh, Eh:,  where ~h is an  in tens i ty  semin- 
var iant .  We obtain by  the usual  methods  the  re levant  
joint  probabi l i ty  dis t r ibut ions shown in Table 4. Two 
addit ional  columns, not  listed in Table 4 in order to 
save space, are obtained by  symmet ry .  One, headed 
q0gg, is obtained from tha t  headed ~PgOg by  inter- 
changing h and k and by  in terchanging h i and  k/. 
The other, headed ~0g0, is obtained from tha t  headed 
~go0 by the same substi tutions.  

6-1.2. T h e  re la t ion  h = h i + h / . - - W e  use the methods  
of § 5-1-2 to obtain re levant  joint  p robabi l i ty  distr ibu- 
tions, expected values, and variances.  Our results are 
summarized in Tables 5 and  6, where the  nota t ion  of 
Table 2 is used. Equat ions  (5-84), (5.87) and (5.88) are 
then  val id for space group P422 also. Table 6 is an  
immedia te  consequence of Table 5. Table  6 m a y  be 
supplemented by  entries yielding the  values of phases  
qh~ with hk l  = 0. If hi is hihi l i  or satisfies h ik i l  i = 0 
and h / i s  h/h/li or satisfies h j k / 1 / =  0, then  it  is f(mnd 
tha t  uoi /= 1, u a j =  1/t;  otherwise u , i i =  ½, u a / =  
2It. Note tha t  ~ / =  ~ / ,  except When, as a conse- 
quence of space-group symmet ry ,  the  values of the  
reference phases ~h~ and Chj are either 0 or ~r or when  
the value of the phase o~ interest  ~h is either 0 or ~r; 
then  ~ / =  oo. 

Although miscellaneous re la t ions  analogous to those 
given in § 5.1-3 are val id here too, we do not  list these 
explicitly. 

6.1 .3 .  P r o c e d u r e  f o r  p h a s e  d e t e r m i n a t i o n . - - W e . o b t a i n  
a set of [El 2 values exact ly  as in. § 5-1.4 except t ha t  
e = (m°~+m~)/n is now defined by  means  of Table  7 
instead of (5.74) and (5.75). 

Table 7. T h e  va lues  o f  ~ = ( m ° + m ~ ) / n  f o r  
space  g r o u p  P422 

Index e 

hkl ~ 0 1 
hkO } 
hOl h # -4-k 1 
Okl 
hkO, h = ± k  2 
bOO, OkO 2 
OO1 4 

If  hk l  = 0 or h = +k  the averages in  (5.79) obtain.  

If  hk l  4 0 and h 4 ± k  the averages in  (5.80) obtain.  
Next,  in view of Table 4, four s u m m a r y  tables are 

constructed. In  the first table,  the  entries, for each 
fixed kj and lj, are 

~v (]E~kjzjl~_ 1).  (6.03) 
~,kj  

In  the second table, the  entries, for each fixed lj and  
hi, are 

(IE~kjzjl 2-1). (6.04) 
kj.~ 
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In  the third table, the entries, for each fixed h i and 
k i, are 

2 ([Eh/kj~jl 2 - 1 ) .  (6"05) 
zi,o 

In  the fourth table, the entries, for each fixed m and 
l], are 

~" ([Ehjkjzj] 9 -  1). (6"06) 
~*ki=m.o 

Next, to find the value of a phase ~hkl = ~hhg, 
where the corresponding IE] is maximal, we employ 
(6.06) with m = h. If h is odd and 1 ~= 0 then, in view 
of Table 4, ~hkl = 0 or g according as (6.06) is positive 
or negative. If h is even and 1 ~: 0 we need to add the 
term (1/~/2)(]E½a,½a,½~[~-l) to (6.06) and then, again 
because of Table 4, ~ = 0 or ~ according as the 
sum is positive or negative. Similar remarks hold if 
l = O .  

Again, to find the value of a phase ~h~ = ~ 0  
where ]E] is maximal, we employ (6-05). Assume 
h ~ ± k .  We first use (6-05) with h i = ½ h ,  k i = ½ k  
and then use (6.05) with hi = ½(h+k), /c~ = ½(h-k) in 
order to compute the approximate values of E + 2 E '  
and 2 E + E "  (Table 4). Since [El, ]E'], and ]E"] are 
in general all known and IEI is large, the sign of E 
can ordinarily be deduced from the computed values 
of E + 2 E '  and 2 E + E " .  Similar remarks apply if 
h = ±k. In  this way the values of many of the ~ 0 ,  
with large corresponding IEI, may be found. 

Next, to find the value of a phase ~ = ~u0, where 
IEI is large, we again employ (6.05) with h i = ½(h+/c), 
k] = ½(h-k)  in order to compute 2 E + E "  (Table 4). 
If [E"] is small the sign of E is immediately deduced. 
If [E"[ is large, the sign of E "  will probably already 
be known from the previous paragraph and the sign 
of E can again be inferred. 

The remarks of the previous paragraphs illustrate 
how Table 4 is to be used in conjunction with the four 
summary tables given by (6.03)-(6-06). I t  is apparent 
tha t  the effective use of Table 4 will enable one to 
determine tentat ive values of many phases ~ ,  with 
large corresponding ]EI, which are intensity semin- 
variants. 
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From this point on the procedure parallels very 
closely tha t  for P222, with one important  difference. 
In  order to fix the origin we specify the values of 
only two phases q%1, ~n2 constituting a linearly semi- 
independent pair (rather than three as for P222). For 
example, we may  specify tha t  the values of ~hl----- 
~hhu and of ~ = ~ 0 ,  be zero, where natural ly[Ehl[  
and [Eh2[ are large. Furthermore, the magnitudes of 
all phases which are structure seminvariants are 
determined (as for P222). Choosing one, say ~8 ,  
which is not an intensity seminvariant and such tha t  
[(Ph3] ~, ½~ and ]Eh3 ] is large, we specify its sign ar- 
bitrarily, thus distinguishing between the enantio- 
morphs S, S'  permitted by the given set of structure- 
factor magnitudes. Then the values of all remaining 
phases are determined as for P222, using Tables 5 
and 6, with additional entries in Table 6 corresponding 
to hkl = O, and easily derivable from Table 5. 

7. T y p e s  3P12 and 3P22 

The foregoing detailed discussion for Types 1P222 and 
2P22 reduces to routine the problem for the remaining 
types. The seminvariant theory shows tha t  for these 
types only one phase is to be suitably specified in 
order to fix the origin uniquely, provided, of course, 
tha t  the functional form for the structure factor has 
been chosen. As already appeared in Type 2P22, some 
of the average values yield the values of certain linear 
combinations of the structure factors rather than tha t  
of a single structure factor. Care should be exercised 
in identifying the linear combinations which arise. 
Although the computations for each space group are 
routine, they will in general be quite tedious. 
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